When do the harmonic Hardy spaces with distinct indices coincide on a hyperbolic Riemann surface?

Dedicated to Professor Hisashi Ishida on his sixtieth birthday

Hiroaki MASAOKA

Abstract

Let R be a hyperbolic Riemann surface. Suppose that $1 \leq p < q \leq \infty$. In this paper we give a characterization that two harmonic Hardy spaces $h_p(R)$ and $h_q(R)$ coincide with each other by using the term of the Martin boundary Δ^M of R. Let Δ^M be the minimal Martin boundary of R. In the case that $p > 1$ it holds that $h_p(R)$ coincides with $h_q(R)$ if and only if there exists a nullset N of Δ^M with respect to the harmonic measure such that $\Delta^M \setminus N$ consists of finitely many points with positive harmonic measure. In the case that $p = 1$ it holds that $h_1(R)$ coincides with $h_q(R)$ if and only if Δ^M consists of finitely many points with positive harmonic measure.

Keywords: hyperbolic Riemann surface, harmonic Hardy space, Martin boundary, minimal Martin boundary, harmonic measure

1. Introduction

Denote by O_G the class of open Riemann surfaces R such that there exist no Green’s functions on R. We say that an open Riemann surface R is parabolic (resp. hyperbolic) if R belongs (resp. does not belong) to O_G.

For an open Riemann surface R, we denote by $HP_+(R)$ and $HB_+(R)$ the classes of non-negative harmonic functions and non-negative bounded harmonic functions on R, respectively. Denote by $MHB_+(R)$ the class of all finite limit functions of monotone increasing sequences of $HB_+(R)$. Set $HX(R) = HX_+(R) - HX_-(R)$ ($X = P, B$), where $HX_+(R) - HX_-(R) = \{ h_1 - h_2 \mid h_j \in HX_+(R) \ (j = 1, 2) \}$, and $MHB(R) = MHB_+(R) - MHB_-(R)$. Then, $HB(R)$ are the class of bounded harmonic functions on R. $MHB(R)$ is called the class of quasi-bounded functions on R. It is well-known that if R is parabolic, then $HX(R)$ ($X = P, B$) and $MHB(R)$ consist of constant functions (cf. [4]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let $\Delta^M = \Delta^{R,M}$ and $\Delta^I = \Delta^{R,M}_I$ the Martin boundary of R and the minimal Martin boundary on R, respectively. We refer to [1] for the details about the Martin boundary. Denote by $h_p(R)$ ($1 \leq p \leq \infty$) the harmonic Hardy space with index p on R (see Definition of harmonic Hardy space in the next section). It is
well-known that, if \(1 \leq p < q \), \(h_q(R) \subset h_p(R) \). It is natural to ask when the converse inclusion relation holds. The purpose of this paper is to answer the question.

Theorem 1. Suppose that \(R \) is hyperbolic and \(1 < p < q \leq \infty \). Then the followings are equivalent:

(i) \(h_p(R) = h_q(R) \),

(ii) there exists a nullset \(N \) of \(\Delta^M \) with respect to the harmonic measure such that \(\Delta^M_1 \setminus N \) consists of finitely many points with positive harmonic measure,

(iii) \(\dim h_p(R) = \dim h_q(R) < \infty \),

where \(\dim h_p(R) \) is the dimension of the linear space \(h_p(R) \).

Theorem 2. Suppose that \(R \) is hyperbolic, \(p = 1 \) and \(1 < q \leq \infty \). Then the followings are equivalent:

(i) \(h_1(R) = h_q(R) \),

(ii) \(\Delta^M_1 \) consists of finitely many points with positive harmonic measure,

(iii) \(\dim h_1(R) = \dim h_q(R) < \infty \),

where \(\dim h_1(R) \) is the dimension of the linear space \(h_1(R) \).

As an immediate consequence of Theorem 2, by the fact that \(h_1(R) = HP(R) \) and definition of \(h_\infty(R) \), we obtain the following.

Corollary (cf. [2, Theorem]). Suppose that \(R \) is hyperbolic. Then the followings are equivalent:

(i) \(HP(R) = HB(R) \),

(ii) \(\Delta^M_1 \) consists of finitely many points with positive harmonic measure,

(iii) \(\dim HP(R) = \dim HB(R) < \infty \),

where \(\dim HP(R) \) is the dimension of the linear space \(HP(R) \).

2. Preliminaries

In this section we state several propositions in order to prove theorems in §1 in the next section. Denote by \(\omega^M_\zeta(\cdot) \) the harmonic measure on \(\Delta^M \) with respect to \(z \in R \). We also denote by \(k_\zeta(z) ((\zeta, z) \in (R \cup \Delta^M) \times R) \) the Martin kernel on \(R \) with pole at \(\zeta \). The following proposition plays fundamental role in the proof of Theorem 2.

Proposition 1 (cf. [1, Hilfssatz 13.3]). Let \(\zeta \) belong to \(\Delta^M_1 \). Then the Martin kernel \(k_\zeta(\cdot) \) with pole at \(\zeta \) is bounded on \(R \) if and only if the harmonic measure \(\omega((\zeta)) \) of the singleton \(\{\zeta\} \) is positive.

The next proposition follows from the Martin representation theorem which is the most fundamental theorem in the Martin theory.

Proposition 2. Let \(u \) be an element in \(HP(R) \). There exists a signed measure \(\mu \) on \(\Delta^M \) such that \(\mu(\Delta^M \setminus \Delta^M_1) = 0 \) and \(u = \int_{\Delta^M_1} k_\zeta d\mu(\zeta) \).

Proof of Proposition 2. Let \(u \) be an element in \(HP(R) \). By definition of \(HP(R) \) there exist elements \(u_1 \) and \(u_2 \) of \(HP_+(R) \) with \(u = u_1 - u_2 \) on \(R \). By the Martin representation theorem(cf. [1, Satz 13.1]) we find the Radon measure \(\mu_j (j = 1, 2) \) on \(\Delta^M \) such that \(\mu_j(\Delta^M \setminus \Delta^M_1) = 0 (j = 1, 2) \).
and \(u_j = \int_{\Delta_{1}^h} k_\xi d\mu_j(\xi) (j = 1, 2) \). Set \(\mu = \mu_1 - \mu_2 \). Then \(\mu \) is a signed measure on \(\Delta^M \). We have
\[
\mu(\Delta^M \setminus \Delta_1^M) = \mu_1(\Delta^M \setminus \Delta_1^M) - \mu_2(\Delta^M \setminus \Delta_1^M) = 0 - 0 = 0
\]
and
\[
u = u_1 - u_2 = \int_{\Delta_{1}^h} k_\xi d\mu_1(\xi) - \int_{\Delta_{1}^h} k_\xi d\mu_2(\xi) = \int_{\Delta_{1}^h} k_\xi d\mu(\xi).
\]
We have the desired result.

Definition (cf. [3, Definition in p.437 and Theorem 4]). Let \(p \geq 1 \). Set
\[
h_p(R) = \begin{cases} \{u \mid u \text{ is harmonic on } R \text{ and } |u|^p \text{ has a harmonic majorant on } R\}, & \text{for } p \geq 1, \\ HB(R), & \text{for } p = \infty. \end{cases}
\]

We call \(h_p(R) \) the **harmonic Hardy space** with index \(p \) on \(R \). We remark that \(h_1(R) = HP(R) \) and that, if \(1 \leq p < q \leq \infty \), \(h_p(R) \subset h_q(R) \).

Proposition 3 (cf. [3, Definition in p.437 and Theorems 4 and 6]). Let \(p \) be a real number with \(1 < p < \infty \). Fix a point \(z_0 \) of \(R \). The next conditions are equivalent.

(i) \(u \in h_p(R) \),

(ii) \(u \) has the minimal fine limit \(u^*(\zeta) \) at almost every point \(\zeta(\in \Delta^M) \) with respect to the harmonic measure \(\omega_\zeta^M \) such that \(u(z) = \int_{\Delta^M} u^*(\zeta)d\omega_\zeta^M(\zeta) \), and \(\int_{\Delta^M} |u^*(\zeta)|^pd\omega_\zeta^M(\zeta) < \infty \).

Set \(h_{p^*}(R) := h_p(R) \cap HP_{p^*}(R) \). By the above proposition it is easily seen that \(h_p(R) = h_{p^*}(R) - h_{p^*}(R) \) and \(h_{p^*}(R) \subset MHB_{p^*}(R) \).

3. Proof of Theorems

3.1 Proof of Theorem 1

First we consider \(q \neq \infty \). Let \(p \) and \(q \) be real numbers with \(1 < p < q \). Suppose that (i) holds.

Fix a point \(z_0 \) of \(R \). Further we suppose that there exists a point \(\zeta(\in \Delta^M) \) such that, for any positive \(\rho \), \(\omega_\zeta^M(U_{\rho}(\zeta)) > 0 \) and \(\omega_\zeta^M(|\zeta|) = 0 \), where \(U_{\rho}(\zeta) \) is the disc with center \(\zeta \) and radius \(\rho \) with respect to the standard metric on \(R \cup \Delta^M \). Hence, there exists a monotone decreasing sequence \(\{\rho_n\} \) with \(\lim_{n \to \infty} \rho_n = 0 \), \(\omega_0^M(U_{\rho_n}(\zeta)) > 0 \), \(\omega_0^M(U_{\rho_{n+1}}(\zeta)) \leq \rho_{n+1}/(q-p) \) \((n \in \mathbb{N}) \). Set
\[
f^*(\xi) = \begin{cases} [\omega_0^M(U_{\rho_n}(\xi)) \setminus U_{\rho_{n+1}}(\xi))]^{-1/q}, & \text{for } \xi(\in U_{\rho_n}(\xi) \setminus U_{\rho_{n+1}}(\xi)), \\ 0, & \text{for } \xi(\in \Delta^M \setminus U_{\rho_n}(\xi)). \end{cases}
\]

And set \(f(z) = \int_{\Delta^M} f^*(\xi)d\omega_\zeta^M(\xi) \). Then, we find that \(f \) has a minimal fine limit \(f^*(\zeta) \) at almost every point \(\zeta(\in \Delta_1^M) \) with respect to \(\omega_\zeta^M \). Hence, we have
\[
\int_{\Delta^M} f^*(\xi)d\omega_\zeta^M(\xi) = \sum_{n=1}^{\infty} [\omega_0^M(U_{\rho_n}(\xi)) \setminus U_{\rho_{n+1}}(\xi))]^{-1}\omega_\zeta^M(U_{\rho_n}(\xi)) \setminus U_{\rho_{n+1}}(\xi))
\]

\[
= \sum_{n=1}^{\infty} 1 = \infty.
\]
and
\[
\int_{\Delta^1} f^*(\xi)^p d\omega^M_{\zeta}(\xi) = \sum_{n=1}^{\infty} \left[\omega^M_{\zeta}(U_{\rho_n}(\xi) \setminus U_{\rho_{n+1}}(\xi)) \right]^{-p/q} \omega^M_{\zeta}(U_{\rho_n}(\xi) \setminus U_{\rho_{n+1}}(\xi)) \\
= \sum_{n=1}^{\infty} \left[\omega^M_{\zeta}(U_{\rho_n}(\xi) \setminus U_{\rho_{n+1}}(\xi)) \right]^{1-p/q} \\
\leq \sum_{n=1}^{\infty} \left[\omega^M_{\zeta}(U_{\rho_n}(\xi) \setminus U_{\rho_{n+1}}(\xi)) \right]^{(q-p)/q} \\
\leq \sum_{n=1}^{\infty} 1/n^2 < \infty.
\]

By Proposition 3 we find that \(f \in h_p(R) \setminus h_q(R) \). By (i) this is a contradiction. Hence, if \(\zeta \in \Delta^M \) satisfies that, for any positive \(\rho \), \(\omega^M_{\zeta}(U_{\rho}(\xi)) > 0 \). By the above fact, it holds that there exists a null set \(N \) of \(\Delta^M \) with respect to \(\omega^M_{\zeta} \) such that \(\Delta^1 \setminus N \) consists of at most countably many points with positive harmonic measure. To see this set

\[N = \{ \xi \in \Delta^M \mid \text{there exists a positive } \rho_\xi \text{ with } \omega^M_{\zeta}(U_{\rho_\xi}(\xi)) = 0 \} \]

and set \(F = \Delta^M \setminus N \). Clearly \(F \cup N = \Delta^M \), \(F \cap N = \emptyset \) and, for any \(\xi \in F \), \(\omega^M_{\zeta}(\{\xi\}) > 0 \). Hence \(F \) is an at most countable subset of \(\Delta^1 \) because \(\omega^M_{\zeta}(\Delta^M \setminus \Delta^1) = 0 \). Hence it is sufficient to prove that \(\omega^M_{\zeta}(N) = 0 \). Set \(O = \cup_{\xi \in N} U_{\rho_{\xi}}(\xi) \). Clearly \(O \) is an open subset of \(R \cup \Delta^M \) and \(O \cap \Delta^M = N \). By the Lindelöf theorem there exists a sequence \(\{\xi_n\}_{n=1}^{\infty} \) of \(N \) with \(O = \cup_{n=1}^{\infty} U_{\rho_{\xi_n}}(\xi_n) \). Hence \(\omega^M_{\zeta}(O) \leq \sum_{n=1}^{\infty} \omega^M_{\zeta}(U_{\rho_{\xi_n}}(\xi_n)) = 0 \), and hence, \(\omega^M_{\zeta}(N) = 0 \).

Suppose that \#(\Delta^1 \setminus N) = \(N_0 \), where \#(\Delta^1 \setminus N) is the cardinal number of \(\Delta^1 \setminus N \). Set \(\Delta^1 \setminus N = \{\xi_n\}_{n=1}^{\infty} \). Hence there exists a subsequence \(\{\xi_{n_l}\}_{l=1}^{\infty} \) of \(\{\xi_n\} \) with \(\omega^M_{\zeta}(\{\xi_{n_l}\}) \leq 1/l^{2q/(q-p)} \) \((l \in \mathbb{N}) \).

Set
\[
g^*(\xi) = \begin{cases}
\frac{1}{\omega_{\zeta}(\{\xi_{n_l}\})}^{-1/q}, & \text{for } \xi = \xi_{n_l}, \\
0, & \text{for } \xi \in \Delta^M \setminus \{\xi_{n_l}\}_{l=1}^{\infty}.
\end{cases}
\]

And set \(g(z) = \int_{\Delta^M} g^*(\xi)d\omega^M_{\zeta}(\xi) \). Then, we find that \(g \) has a minimal fine limit \(g^*(\xi) \) at almost every point \(\xi \in \Delta^M \) with respect to \(\omega^M_{\zeta} \). Hence, we have
\[
\int_{\Delta^M} g^*(\xi)^qd\omega^M_{\zeta}(\xi) = \sum_{l=1}^{\infty} \frac{1}{\omega_{\zeta}(\{\xi_{n_l}\})}^{-1} \omega^M_{\zeta}(\{\xi_{n_l}\}) \\
= \sum_{n=1}^{\infty} 1 = \infty.
\]
and

\[
\int_{\Delta_M^1} g^*(\xi)^p d\omega_{M_20}(\xi) = \sum_{l=1}^{\infty} \left[\omega_{M_20}(\{\xi_n\}) \right]^{1-p/q} \omega_{M_20}((\xi_n)) \\
= \sum_{l=1}^{\infty} [\omega_{M_20}(\{\xi_n\})]^{1-\frac{1}{p/q}} \\
\leq \sum_{l=1}^{\infty} [\omega_{M_20}(\{\xi_n\})]^{(q-p)/q} \\
\leq \sum_{l=1}^{\infty} \frac{1}{l^2} < \infty.
\]

By Proposition 3 we find that \(g \in h_p(R) \setminus h_q(R) \). By (i) this is a contradiction. Hence, there exists a nullset \(N \) of \(\Delta_M^1 \) with respect to \(\omega_{M_20} \) such that \(\Delta_M^1 \setminus N \) consists of finitely many points with positive harmonic measure, and so, we get (ii).

Suppose that (ii) holds. Fix a point \(z_0 \) of \(R \). We can find a nullset \(N \) of \(\Delta_M^1 \) with respect to \(\omega_{M_20} \) such that \(\Delta_M^1 \setminus N \) consists of finitely many points with positive harmonic measure. Let \(n_0 \) be the cardinal number of \(\Delta_M^1 \setminus N \). Set \(\Delta_M^1 \setminus N = \{\xi_n\}_{n=1}^{n_0} \). Let \(p \) and \(q \) be real numbers with \(p < q \) and \(p > 1 \). Clearly \(h_q(R) \subset h_p(R) \). Take any element of \(h \) of \(h_p(R) \). By definition of \(h_p(R) \) \(h \) has a minimal fine limit \(h^*(\xi) \) at almost every point \(\xi \in \Delta_M^1 \) with respect to \(\omega_{M_20} \) such that \(h(z) = \int_{\Delta_M^1} h^*(\xi)d\omega_{M_20}(\xi) \) and \(\int_{\Delta_M^1} |h^*(\xi)|^q d\omega_{M_20}(\xi) < \infty \). By (ii) we have

\[
h(z) = \int_{\Delta_M^1} h^*(\xi)d\omega_{M_20}(\xi) = \sum_{n=1}^{n_0} h^*(\xi_n)\omega_{M_20}(\{\xi_n\})
\]

and

\[
\int_{\Delta_M^1} |h^*(\xi)|^q d\omega_{M_20}(\xi) = \sum_{n=1}^{n_0} |h^*(\xi_n)|^q \omega_{M_20}(\{\xi_n\}) < \infty.
\]

Hence \(h_p(R) \leq n_0 \) and \(|h^*(\xi_n)| < \infty \) \((n = 1, \ldots, n_0) \). Thus,

\[
\int_{\Delta_M^1} |h^*(\xi)|^q d\omega_{M_20}(\xi) = \sum_{n=1}^{n_0} |h^*(\xi_n)|^q \omega_{M_20}(\{\xi_n\}) < \infty,
\]

and hence \(h \in h_q(R) \), that is, \(h_p(R) \subset h_q(R) \). Hence \(h_p(R) = h_q(R) \). Hence dim \(h_q(R) = \) dim \(h_p(R) \leq n_0 < \infty \). We get (iii).

Suppose that (iii) holds. Let \(p \) and \(q \) be real numbers with \(p < q \) and \(p > 1 \). Since \(h_p(R) \) and \(h_q(R) \) are linear spaces and \(h_q(R) \) is a subspace of \(h_p(R) \), by (iii), we find that \(h_p(R) = h_q(R) \). Hence we get (i).

Next we consider \(q = \infty \). Suppose that (i) holds. Take a real number \(p' \) with \(p' > p \). Then \(HB(R) \subset h_p(R) \subset h_p(R) \). By (i) \(h_p(R) = h_p(R) \). By the implication: (i) \(\Rightarrow \) (ii) in the case that \(q \neq \infty \) we get (ii).

Suppose that (ii) holds. Fix a point \(z_0 \) of \(R \). We can find a nullset \(N \) of \(\Delta_M^1 \) with respect to \(\omega_{M_20} \) such that \(\Delta_M^1 \setminus N \) consists of finitely many points with positive harmonic measure. Let \(n_0 \) be the cardinal number of \(\Delta_M^1 \setminus N \). Set \(\Delta_M^1 \setminus N = \{\xi_n\}_{n=1}^{n_0} \). Clearly \(HB(R) \subset h_p(R) \). Take any element \(h \) of
exists a positive constant \(\beta \).

Hence \(\dim h_p(R) \leq n_0 \) and \(|h^*(\xi_n)| < \infty \) \((n = 1, \ldots, n_0) \). Thus, \(h \in HB(R) \), that is, \(h_p(R) \subseteq HB(R) \). Hence \(h_p(R) = HB(R) \). Hence \(\dim HB(R) = \dim h_p(R) \leq n_0 < \infty \). We get (iii).

Suppose that (iii) holds. Since \(h_p(R) \) and \(HB(R) \) are linear spaces and \(HB(R) \) is a subspace of \(h_p(R) \), by (iii), we find that \(h_p(R) = HB(R) \). Hence we get (i).

Therefore we have the desired result.

3.2 Proof of Theorem 2

First we consider \(q \neq \infty \). Suppose that (i) holds, that is, \(HP(R) = h_q(R) \) \((q > 1) \). Let \(h \) be a minimal harmonic function on \(R \). Clearly \(h \in HP_q(R) \). By (i) \(h \in HP_q(R) \cap h_q(R) = h_{q+}(R) \). Since \(h_{q+}(R) \subseteq MB_{q+}(R) \), \(h \in MB_{q+}(R) \). Thus there exists a monotone increasing sequence \(\{h_n\}_{n=1}^{\infty} \) of \(MB_{q+}(R) \) such that \(h_n \neq 0 \) \((n \in \mathbb{N}) \) and \(\lim_{n \to \infty} h_n = h \) on \(R \). By minimality of \(h \) there exists a positive constant \(\alpha \) such that \(h = \alpha h_1 \) on \(R \). Hence \(h \) is bounded on \(R \). Let \(\xi_h \) be the element of \(\Delta_1^M \) coresponding to \(h \). Fix a point \(z_0 \) of \(R \). Since \(h \) is minimal, there exists a positive constant \(\beta \) with \(h = \beta k_{\xi_h} \). Hence, because \(h \) is bounded on \(R \), by Proposition 1 we find that the harmonic measure \(\omega_{z_0}^M(\{\xi_h\}) \) of \(\{\xi_h\} \) is positive. Hence, \(\Delta_1^M \) consists of at most countably many points with positive harmonic measure.

Suppose that \(\#\Delta_1^M = \infty \). Set \(\Delta_1^M = \{\xi_n\}_{n=1}^{\infty} \). Hence there exists a subsequence \(\{\xi_n\}_{n=1}^{\infty} \) of \(\{\xi_n\}_{n=1}^{\infty} \) with \(\omega_{z_0}^M(\{\xi_n\}) \leq 1/\rho^q/(q-1) \) \((l \in \mathbb{N}) \). Set

\[
\begin{align*}
 g^*(\xi) &= \begin{cases}
 \omega_{z_0}^M(\{\xi_n\})^{-1/q}, & \text{for } \xi = \xi_n, \\
 0, & \text{for } \xi \in \Delta_1^M \setminus \{\xi_n\}_{n=1}^{\infty}.
\end{cases}
\end{align*}
\]

And set \(g(z) = \int g^*(\xi)d\omega_{z_0}^M(\xi) \). Then we have

\[
\int g^*(\xi)d\omega_{z_0}^M(\xi) = \sum_{n=1}^{\infty} \omega_{z_0}^M(\{\xi_n\})^{-1} \omega_{z_0}^M(\{\xi_n\}) = \sum_{n=1}^{\infty} 1 = \infty,
\]

By (ii) we have

\[
h(z) = \int_{\Delta_1^M} h^*(\xi)d\omega_{z_0}^M(\xi) = \sum_{n=1}^{n_0} h^*(\xi_n)\omega_{z_0}^M(\{\xi_n\})
\]

and

\[
\int_{\Delta_1^M} |h^*(\xi)|^p d\omega_{z_0}^M(\xi) = \sum_{n=1}^{n_0} |h^*(\xi_n)|^p \omega_{z_0}^M(\{\xi_n\}) < \infty.
\]

By definition of \(h_p(R) \) we find that \(h(z) = \sum_{n=1}^{n_0} h^*(\xi_n)\omega_{z_0}^M(\{\xi_n\}) \).
and
\[
\int g^*(\xi) d\omega^M_\infty(\xi) = \sum_{l=1}^\infty [\omega^M_\infty(\{\xi_n\})]^{-1/q} \omega^M_\infty(\zeta_n)
\]
\[
= \sum_{l=1}^\infty [\omega^M_\infty(\{\xi_n\})]^{1-1/q}
\]
\[
\leq \sum_{l=1}^\infty [\omega^M_\infty(\{\xi_n\})]^{(q-1)/q}
\]
\[
\leq \sum_{l=1}^\infty 1/l^2 < \infty.
\]
By Proposition 3 we find that \(g \in MHB(R) \setminus h_q(R)\). Since \(HP(R) \supset MHB(R)\), by (i), this is a contradiction. Hence \(\Delta^M_1\) consists of finitely many points with positive harmonic measure, and so we get (ii).

Suppose that (ii) holds. Let \(n_0\) be the cardinal number of \(\Delta^M_1\). Set \(\Delta^M_1 = \{\zeta_n\}_{n=1}^{n_0}\). Let \(q > 1\). Clearly \(h_q(R) \subset HP(R)\). Take any element \(h\) of \(HP(R)\). By Proposition 2 we find a signed measure \(\mu\) on \(\Delta^M\) such that \(\mu(\Delta^M \setminus \Delta^M_1) = 0\) and \(h(z) = \int_{\Delta^M_1} \omega^M_z(\{\xi\})d\mu(\xi)\). By (ii) we have
\[
h(z) = \int_{\Delta^M_1} \omega^M_z(\{\xi\})d\mu(\xi) = \sum_{n=1}^{n_0} \omega^M_z(\{\xi_n\})\mu(\{\xi_n\}) = \int_{\Delta^M_1} \mu(\{\xi\})d\omega^M_z(\xi)
\]
and
\[
|\mu(\{\xi_n\})| < \infty \quad (n = 1, \ldots, n_0).
\]
Fix a point \(z_0\) of \(R\). We have
\[
\int_{\Delta^M_1} |\mu(\{\xi\})|^q d\omega^M_\infty(\xi) = \sum_{n=1}^{n_0} |\mu(\{\xi_n\})|^q \omega^M_\infty(\{\xi_n\}) < \infty.
\]
Hence \(dim HP(R) \leq n_0\) and by Proposition 3, \(h \in h_q(R)\), that is, \(HP(R) \subset h_q(R)\). Hence \(HP(R) = h_q(R)\). Hence \(dim h_q(R) = dim HP(R) \leq n_0 < \infty\). We get (iii).

Suppose that (iii) holds. Let \(q > 1\). Since \(HP(R)\) and \(h_q(R)\) are linear spaces and \(h_q(R)\) is a subspace of \(HP(R)\), by (iii), we find that \(HP(R) = h_q(R)\). Hence we get (i).

Next we consider \(q = \infty\). Suppose that (i) holds, that is, \(HB(R) = HP(R)\). Let \(q' > 1\). Since \(HB(R) \subset h_{q'}(R) \subset HP(R)\), \(h_{q'}(R) = HP(R)\). By the implication: (i) \(\Rightarrow\) (ii) in the case that \(q \neq \infty\) we get (ii).

Suppose that (ii) holds. Let \(n_0\) be the cardinal number of \(\Delta^M_1\). Set \(\Delta^M_1 = \{\zeta_n\}_{n=1}^{n_0}\). Clearly \(HB(R) \subset HP(R)\). Take any element \(h\) of \(HP(R)\). By Proposition 2 we find a signed measure \(\mu\) on \(\Delta^M\) such that \(\mu(\Delta^M \setminus \Delta^M_1) = 0\) and \(h(z) = \int_{\Delta^M_1} \omega^M_z(\{\xi\})d\mu(\xi)\). By (ii) we have
\[
h(z) = \int_{\Delta^M_1} \omega^M_z(\{\xi\})d\mu(\xi) = \sum_{n=1}^{n_0} \mu(\{\xi_n\})\omega^M_z(\{\xi_n\})
\]
Hence \(dim HP(R) \leq n_0\) and \(h \in HB(R)\), that is, \(HP(R) \subset HB(R)\). Hence \(HP(R) = HB(R)\). Hence \(dim HB(R) = dim HP(R) \leq n_0 < \infty\). We get (iii).
Suppose that (iii) holds. Since $HP(R)$ and $HB(R)$ are linear spaces and $HB(R)$ is a subspace of $HP(R)$, by (iii), we find that $HP(R) = HB(R)$. Hence we get (i).

Therefore we have the desired result.

References

いつ双曲のリーマン面上の異なる指数をもつ調和ハーディ
空間は同一の集合になるか?

正岡 弘照

要 旨

双曲的（グリーン関数が存在する）リーマン面とする。1 ≤ p < q ≦ ∞ を仮定する。この論文では、調和ハーディ空間 \(h_p(R) \) と \(h_q(R) \) が同一の集合であるための特徴づけを \(R \) のマルチン境界 \(\Delta^M \) の言葉で与える。

\(\Delta^M \) を \(R \) のミニマルマルチン境界とする。\(p > 1 \) の場合、\(h_p(R) \) と \(h_q(R) \) が同一の集合であるための必要十分条件は \(\Delta^M \) の部分集合 \(N \) が存在して、その \(\Delta^M \) 上の調和測度は 0 で、\(\Delta^M \setminus N \) が有限個の \(\Delta^M \) 上の調和測度が正の点からなることである。\(p = 1 \) である場合、\(h_1(R) \) と \(h_q(R) \) が同一の集合であるための必要十分条件は \(\Delta^M \) が有限個の \(\Delta^M \) 上の調和測度が正の点からなることである。

キーワード：双曲的リーマン面、調和ハーディ空間、マルチン境界、ミニマルマルチン境界、調和測度