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Abstract

We will construct a p-adic analytic family of D-th Shintani lifting generalized by Kojima and Tokuno for
a Coleman family. Consequently, we will have a p-adic L-function which interpolates the central L-values
attached to a Coleman family and obtain a congruence between the central L-values. Focusing on the case of
p-ordinary, we will obtain two applications. One of them states that a congruence between Hecke eigenforms
of different weights sufficiently close, p-adically, derives a congruence between their central L-values. The other
one is about the Goldfeld conjecture in analytic number theory. We will show that there exists a primitive form
satisfying the conjecture for each even weight sufficiently close to 2, 3-adically, thanks to a result of Vatsal.
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1. Introduction

Hida is apparently the first to establish a theory of p-adic interpolation of modular forms of half-integral
weight in [10]. He constructed Λ-adic cusp forms of half-integral weight for SL(2)/Q and proved a p-adic
interpolation of Waldspurger’s formula ([32, Corollary 2]) by using the Shimura correspondence. His result is
essentially generalized by Ramsey to the case of finite slope in [25]. The results of Ramsey are not constrained5

to the setting individual families but apply more broadly to the eigencurve. On the other hand, after Hida’s
work in [10], Stevens established p-adic interpolation of the classical Shintani lifting for a Hida family ([29]).
His result is essentially generalized by Park to the case of finite slope in [23]. However, their two results on the
classical Shintani lifting leave some room for improvement since the error term of p-adic interpolation is not
necessarily a p-adic unit (see Remark 5.8). The significant problem for p-adic interpolation is to deal with the10

error term of interpolation. To see this, let f be a function whose values at integer points are algebraic integers
and F a p-adic analytic function that has the interpolation property for any k in a neighborhood in the domain
of F , F (k) = ekf(k) with some error term ek 6= 0. Assume that the values of f and ek are contained in the
p-adic integer ring Zp for each k in some neighborhood B for simplicity. This implies that for k, k′ ∈ B, we
have ekf(k) ≡ ek′f(k′) (mod p). The problem is that the obtained congruence may be trivial if both ek and ek′15

are not p-adic units. In [16], Kohnen and Zagier proved an explicit Waldspurger’s formula by using the D-th
Shintani lifting for a fundamental discriminant D. We remark that the D-th Shintani lifting coincides with the
classical Shintani lifting when D = 1 at least for the full modular case ([16, Corollary 8]). The main purpose of
this paper is to present an improvement of Park’s construction of a p-adic family of the classical Shintani lifting
for a Coleman family (see Theorem 5.7) and interpolate the central L-values attached to primitive forms lying20

in a Coleman family (see Corollary 5.9).

Notation and terminology. Throughout the paper, we fix an odd prime p, a positive integer N satisfying
(N, 2p) = 1 and a non-negative rational number α. We assume that Np ≥ 4 to ensure that Γ1(Np) is torsion-
free. We denote by Q̄ and Q̄p an algebraic closure of the rational number field Q, and the p-adic number
field Qp, respectively. Let C be the complex number field and Cp the p-adic completion of Q̄p. We fix two

embeddings i∞ : Q̄ ↪→ C and ip : Q̄ ↪→ Q̄p, and an isomorphism Cp
∼−→ C which commutes with i∞ and ip.

Let ordp be the normalized p-adic additive valuation on Cp so that ordp(p) = 1 and | · |p the absolute value
given by ordp. For z ∈ C, we define

√
z = z1/2 so that −π/2 < arg(z1/2) ≤ π/2 and put zk/2 := (

√
z)k for

each integer k. We denote by Γ0(M) the congruence subgroup of SL2(Z) consisting of matrices whose left lower
entry is divisible by M . We denote by Sk(M, ε) the space of Γ0(M)-cusp forms of weight k with a Dirichlet
character ε modulo M . We denote by Snew

k (M, ε) the orthogonal complement of the subspace of old forms of
level N in Sk(M, ε) with respect to the Petersson inner product. For a modular form f , we denote by an(f)
the n-th Fourier coefficient of f and put L(s, f) :=

∑
n≥1 an(f)n−s. We call f ∈ Sk(M, ε) a Hecke eigenform

of level M if f satisfies f |Tn = an(f)f for the usual Hecke operators Tn on Sk(M, ε) for all positive integers n.
We refer to a Hecke eigenform of level M in Snew

k (M, ε) as a primitive form of level M . For a Hecke eigenform
f ∈ Sk(M, ε), the Tp-slope of f is defined as ordp(ap(f)). We denote by Sk(M, ε)α the subspace of Sk(M, ε)
spanned by the generalized eigenspaces for eigenvalues λ of Tp with ordp(λ) = α. Let Z[ε] be the ring generated
by the values of ε over Z. For a Z[ε]-algebra R and q := exp(2π

√
−1z), we put

Sk(M, ε;R)α := (Sk(M, ε)α ∩ Z[ε][[q]])⊗Z[ε] R, (1)

Snew
k (M, ε;R)α := (Snew

k (M, ε) ∩ Sk(M, ε;Z[ε])α)⊗Z[ε] R. (2)

For a Hecke eigenform f , we denote by Qf the subfield of C generated over Q by the eigenvalues of f for the
Hecke operators Tn for all positive integers n and refer to it as the Hecke field of f . For a Dirichlet character
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χ, we denote by χ0 the primitive character attached to χ, cχ the conductor of χ, and G(χ0) the Gauss sum

of χ0, i.e., G(χ0) :=
∑cχ−1
a=0 χ0(a) exp(2π

√
−1a/cχ). For f ∈ Sk(M, ε) and a pritmitive character ψ, we denote25

by f ⊗ ψ ∈ Sk(L, εψ) the ψ-twist of f defined by an(f ⊗ ψ) := ψ(n)an(f) for all n ≥ 1, where L is the least
common multiple of M , c2ψ, and cψcε ([20, Lemma 4.3.10.(2)]). For a non-zero integer a, we let χa denote the

Kronecker symbol χa(b) :=
(
a
b

)
defined by [20, (3.1.9)]. We call D a fundamental discriminant if D is either 1

or the discriminant of a quadratic field. We denote by 1 the trivial Dirichlet character. By d ‖ n, we mean d | n
and (d, n/d) = 1.30

We state the objectives of the paper. Let f ∈ Snew
2k0+2(N,χ2)α be a primitive form with 2k0 + 1 > α 6=

(2k0 + 1)/2, f∗ ∈ S2k0+2(Np, χ2)α the p-stabilization, which is a Hecke eigenform of level Np with the same
Tq-eigenvalues as f for any q except for q = p (see (115)), D a fundamental discriminant with (D,Np) = 1
and χDχ(−1)(−1)k0 = −1, and K the p-adic completion of the number field obtained by adjoining the values
of χ and χ(−1)1/2|D|1/2G(χ−1

0 ) to the Hecke field Qf∗ . Then there exists a Coleman family {f∗2k+2}k passing
through f∗, which consists of the p-stabilizations f∗2k+2 of each primitive form f2k+2 ∈ Snew

2k+2(N,χ2;OK)α for
each 2k in

W := {k ∈ Z | k ≡ 2k0 (mod (p− 1)pm), k + 1 > α}, (3)

satisfying f∗2k+2 ≡ f∗2k0+2 = f∗ (mod p) (see Theorem 4.4). We consider the D-th Shintani lifting θNpk,χ,D(f∗2k+2),

which is a cusp form of half-integral weight k + 3/2 in the Kohnen plus space (see (12) for θNpk,χ,D and (7)

for the Kohnen plus space). Let Ω(f∗2k+2)− ∈ C×p be the period attached to f∗2k+2 obtained by the fact that
the f∗2k+2-part of a group of modular symbols is free of rank one over the ring of integer OK of K (see [13,
Proposition 3.3]). By the virtue of cohomological interpretation of the D-th Shintani lifting, we can define the
algebraic part of the |D|-th Shintani lifting

θalg
D (f∗2k+2) := (Ω(f∗2k+2)−)−1p · θNpk,χ,D(f∗2k+2), (4)

has the Fourier coefficients in OK(Theorem 3.3), where we use our hypothesis Np ≥ 4 to ensure that Γ0(Np)
is torsion-free and identify modular symbols with compactly supported cohomology (see Section 3). We will

interpolate a family {θalg
D (f∗2k+2)}k, p-adically. According to Theorem 5.3, we may take the error terms of

the p-adic interpolation as p-adic units. Then, we will prove the main theorem that for k sufficiently close to
k0, p-adically, θalg

D (f∗2k+2) is congruent to θalg
D (f∗) modulo p-power, up to a p-adic unit (Theorem 5.7). The

remarkable property of the D-th Shintani lifting is that a|D|(θ
N
k,χ,D(f2k+2)) equals L(k + 1, f ⊗ χDχ−1

0 ), up to
an explicit constant (Theorem 2.4). Since f∗2k+2 is not a primitive form of level Np, we cannot immediately

find a relation between a|D|(θ
Np
k,χ,D(f∗2k+2)) and the central L-value attached to f∗2k+2. However, we fortunately

see that a|D|(θ
Np
k,χ,D(f∗2k+2)) equals a|D|(θ

N
k,χ,D(f2k+2)), up to the product of 2(1− p−1) and the p-Euler factor

(Proposition 2.10). Then we obtain a congruence between the central L-values attached to f∗ and f∗2k+2

(Corollary 5.9). The final section of the paper gives two applications under the assumption that χ = 1, α = 0,
and N is square-free. One of them states that a congruence between Hecke eigenforms of different weights
sufficiently close, p-adically, derives a congruence between their central L-values, up to a p-adic unit (Theorem
6.1). The other application is for the Goldfeld conjecture in analytic number theory. To state the conjecture,
let f be a primitive form of weight 2k + 2 and D a fundamental discriminant. For a positive real number X,
we define the number

Mf (X) := ]{|D| ≤ X | L(k + 1, f ⊗ χD) 6= 0}. (5)

Then the conjecture states that

Mf (X)� X, (6)
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i.e., there exists a positive constant c such that for sufficiently large X we have Mf (X) > cX. Currently, it
seems that the best estimate in general case is due to Ono and Skinner [22], who showed Mf (X) � X/ logX
(see [22, Corollary 3]). Suppose that k+ 1 ≥ 6 is even. Kohnen [15] proved that there exists a Hecke eigenform
f ∈ S2k+2(SL2(Z)) satisfying (6) (see [15, Corollary 1]). Moreover, he pointed out that (6) holds for any Hecke
eigenform f ∈ S2k+2(SL2(Z)) (see [15, Corollary 2]) assuming a conjecture of Maeda (see [12, Conjecture 1.2])35

with respect to each even integer k+ 1 ≥ 6. Vatsal showed that a primitive form f attached to a certain elliptic
curve over Q of conductor N with a rational point of order 3 and good ordinary reduction at 3 satisfies (6).
Taking p = 3 (and hence N ≥ 3 by the assumption that N is odd with Np ≥ 4) in Theorem 5.7, we expand
this result into the case of higher weights (Theorem 6.4). Our result may be regarded as a generalization of
Kohnen’s result in [15] to the case of odd square-free level N ≥ 3.40

2. Kojima and Tokuno’s D-th Shintani lifting

2.1. Definition and properties

Let k be a non-negative integer, M an odd positive integer and χ a Dirichlet character modulo M . Put
χ̃ := χεχ with ε := χ(−1). We denote the Kohnen plus space by

S+
k+3/2(4M, χ̃) :=

{
g ∈ SSh

k+3/2(4M, χ̃) | an(g) = 0 if χ(−1)(−1)k+1n ≡ 2, 3 (mod 4)
}
, (7)

where SSh
k+2/3(4M, χ̃) is the space of cusp forms of half-integral weight k+ 3/2 with level 4M and a character χ̃

modulo 4M in the sense of Shimura [27, p. 447]. Let D be a fundamental discriminant with χ(−1)(−1)k+1D > 0
and (D,M) = 1. For g ∈ S+

k+3/2(4M, χ̃) and each prime `, the Hecke operator T`2 is defined by

an(g|T`2) = a`2n(g) + χ(−1)k+1nχ̃(`)`kan(g) + χ(`2)`2k−1an/`2(g) (8)

for any positive integer n with χ(−1)(−1)k+1n ≡ 0, 1 (mod 4). We define the D-th Shimura lifting ShMk,χ,D by

ShMk,χ,D(g) :=
∑
n≥1

∑
d|n

χDχ(d)dkan2|D|/d2(g)

 qn (9)

(see [17, (3-1)]). As Kohnen pointed out in his paper [14, p. 241, l. 4-9], the image of the D-th Shimura lifting
ShMk,χ,D is contained in the space of cusp forms under the assumption that

either k ≥ 1, M is square-free, or cubic-free and χ = 1. (10)

Then the following theorem is a restatement of [17, Theorem 3.1] including the case of k ≥ 0.

Theorem 2.1. We have the commutative diagram:

S+
k+3/2(4M, χ̃)

T`2

��

ShMk,χ,D// S2k+2(M,χ2)

T`

��
S+
k+3/2(4M, χ̃)

ShMk,χ,D// S2k+2(M,χ2)

(11)

for all primes `. In this sense, the D-th Shimura lifting ShMk,χ,D is Hecke equivariant.
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Now we define the D-th Shintani lifting θMk,χ,D as the adjoint mapping of Shk,χ,D with respect to the Petersson
inner product 〈 , 〉, i.e.,

〈g, θMk,χ,D(f)〉 = 〈ShMk,χ,D(g), f〉 (12)

for every g ∈ Sk+3/2(4M, χ̃) and f ∈ S2k+2(M,χ2). Then the D-th Shintani lifting θMk,χ,D is Hecke equivariant,

i.e., θMk,χ,D(f)|T`2 = θMk,χ,D(f |T`) for all primes `. Whenever we use θMk,χ,D, we assume that (10). Let ∆ be a
non-zero integer with ∆ ≡ 0, 1 (mod 4). We denote by [a, b, c] the binary quadratic form defined by

[a, b, c](X,Y ) = aX2 + bXY + cY 2 (13)

and call b2 − 4ac the discriminant. We denote by L(∆) the set of all integral binary quadratic forms with
discriminant ∆. For each integer M , we set

LM (∆) := {[a, b, c] ∈ L(∆) | a ≡ 0 (mod M)}. (14)

We let γ ∈ SL2(Z) act on [a, b, c] ∈ LM (∆) by

([a, b, c] ◦ γ)(X,Y ) := [a, b, c]((X,Y )tγ). (15)

Letting γ =

(
x y
z w

)
, we see that the action above is as follows:

[a, b, c] ◦ γ = [ax2 + bxz + cz2, 2axy + byz + bxw + 2czw, ay2 + byw + cw2]

(16)

For each Q = [a, b, c] ∈ LM (∆), we associate it with the pair (ωQ, ω
′

Q) of points in P1(R) = R ∪ {i∞} given by

(ωQ, ω
′

Q) :=


(

(−b− 2
√

∆)/2a, (−b+ 2
√

∆)/2a
)

if a 6= 0,

(−c/b, i∞) if a = 0 and b > 0,

(i∞, −c/b) if a = 0 and b < 0,

(17)

and the oriented geodesic path CQ defined as the image in Γ0(M)\H of the semicircle a|z|2 + bRez + c = 0

oriented from ωQ to ω
′

Q. We set χ0(Q) := χ0(c). A simple verification shows that for each f ∈ S2k+2(M,χ2),
the integral

Ik,χ(f,Q) := χ0(Q)

∫
CQ

f(z)Q(z, 1)kdz (18)

absolutely converges and depends only on the Γ0(M)-orbit of Q in LM (∆). Then by the same computation as45

in [17], we have the following explicit expressions of the Fourier coefficients of θMk,χ,D.

Theorem 2.2 ([17, Theorem 3.2]). For any f ∈ S2k+2(M,χ2) and any n ∈ Z>0 with χ(−1)(−1)k+1n ≡
0, 1 (mod 4). Then

an(θMk,χ,D(f)) = ck,χ,D
∑

t|c−1
χ M

µχDχ
−1
0 (t)t−k−1γMk,χ,D(f ;n, t), (19)

where we put

ck,χ,D := (−1)[(k+1)/2]2k+1χD(cχ)χ(−1)1/2χ−1(D)ckχG(χ−1
0 ), (20)

∆n,t := t2c2χ|D|n, (21)

γMk,χ,D(f ;n, t) :=
∑

Q∈LtcχM (∆n,t)/Γ0(M)

ωD(Q)Ik,χ(f,Q), (22)
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and let [x] be the greatest integer not greater than x, µ the Möbius function and ωD the generalized genus
character as in [14]. Furthermore, if f ∈ Snew

2k+2(M,χ2), then

an(θMk,χ,D(f)) = ck,χ,Dγ
M
k,χ,D(f ;n, 1). (23)

Remark 2.3. Since the sum (22) equals the Petersson inner product of f and the oldform of level M for t 6= 1,
(see [17, (3-16]), we see that

γMk,χ,D(f ;n, t) = 0 (24)

for t 6= 1 if f is a newform of level M . This is why we obtain the last assertion in the theorem above.

Suppose that cχ ‖ M . Let ` be a prime factor of M/cχ, We put v` := ord`(M/cχ) = ord`(M). Let γ` be an
element in SL2(Z) such that

γ` ≡



(
0 −1

1 0

)
(mod `2v`),(

1 0

0 1

)
(mod (M/`v`)2).

(25)

We put η` := γ` · diag(`v` , 1) (see [20, (4.6.21)]). We define the eigenvalue of f for the Atkin-Lehner involution
η` by

w`(f) := χ2(`v`)a1(f |2k+2η`). (26)

If v` = 1, then we have a1(f |2k+2η`) = −χ−2(`)`−ka`(f) by [20, Corollary 4,6,18.(2)] and hence

w`(f) = −`−ka`(f) ∈ {±1} (27)

by [20, Theorem 4.6.17.(2)].

Theorem 2.4 ([17, Theorem 4.2 and (4-12)]). Let f ∈ Snew
2k+2(M,χ2) be a primitive form. Suppose that

cχ ‖M . We put

RD(f) :=
∏
`

(
1 + χDχ(`v`)w`(f)

(
1− χDχ−1(`)`−k−1a`(f)

1− χDχ(`)`−k−1a`(f)c

))
, (28)

where
∏
` is taken over all prime factors ` of M/cχ and a`(f)c is the complex conjugate of a`(f). Then

a|D|(θ
M
k,D,χ(f)) = RD(f)|D|k+1/2c2k+1

χ π−(k+1)k!L
(
k + 1, f ⊗ χDχ−1

0

)
, (29)

Remark 2.5. Let the notation and the assumption be the same as the theorem above.

1. If RD(f) 6= 0, then ordp(RD(f)) = 1.50

2. If χ2 = 1, then the Hecke field of f is totally real by [26, Proposition 1.3], and hence

RD(f) =
∏
`

(1 + χDχ(`v`)w`(f)) . (30)

3. If χ2 = 1 and M/cχ is square-free, then RD(f) ∈ {0, 2ν(M/cχ)} by (27), where ν(M/cχ) is the number of
distinct prime factors of M/cχ. In particular, if χ = 1, then the followings are equivalent:
(a) RD(f) 6= 0.
(b) RD(f) = 2ν(M).
(c) χD(`) = w`(f) for all prime divisors ` of M .55

In this case, the formula (29) is nothing but the result of Kohnen in [14] and the sign of the functional
equation of L(s, f ⊗ χD) is (−1)k+1χD(−1), i.e., if (−1)k+1χD(−1) = −1, then L(k + 1, f ⊗ χD) = 0.
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2.2. Integral binary quadratic forms on which Γ0(M) acts

We need to prepare more notations for sets of quadratic forms in order to state a key lemma below (Lemma
2.8), which plays an important role in the proof of Proposition 2.10. We refer to [9] for a theory of quadratic
forms that we need. We fix a positive integer M and a non-zero integer ∆ ≡ 1, 0 (mod 4) in this subsection.
We denoted the set of Γ0(M)-primitive quadratic forms of discriminant ∆ by

L0
M (∆) := {[Ma, b, c] ∈ LM (∆) | (a, b, c) = 1}. (31)

We set

SM (∆) := {%̄ ∈ Z/2MZ | %2 ≡ ∆ (mod 4M)}. (32)

For %̄ ∈ SM (∆), we set

L0
M,%(∆) := {[Ma, b, c] ∈ L0

M (∆) | b ≡ % (mod 2M)}. (33)

Note that the Γ0(M)-action ◦ defined by (16) preserves L0
M,%(∆) and that we have the following decomposition

into the disjoint union of Γ0(M)-invariant sets:

L0
M (∆) =

⊔
%̄∈SM (∆)

L0
M,%(∆). (34)

We then have the following decomposition into the union of Γ0(M)-invariant sets:

LM (∆) =
⊔
l2|∆

l · L0
M (∆/l2) =

⊔
l2|∆

⋃
%̄∈SM (∆/l2)

l · L0
M,%(∆/l

2), (35)

where the disjoint union
⊔
l2|∆ is taken over all positive integers l such that l2 | ∆. For parameters M,∆, % of

L0
M,%(∆), we define the greatest common divisor

mM
% := m :=

(
M,%, (%2 −∆)/4M

)
. (36)

Note that the definition (36) depends only on % modulo 2M . For [Ma, b, c] ∈ L0
M,%(∆), we have (M, b, ac) = m

and (a, b, c) = 1, so the two numbers

(M, b, a) = m1 and (M, b, c) = m2 (37)

are coprime and m1m2 = m. We denote by L0
M,%,m1,m2

(∆) the set of forms [Ma, b, c] ∈ L0
M,%(∆) satisfying (37).

We then have the following decomposition into the disjoint union of Γ0(M)-invariant sets:

L0
M,%(∆) =

⊔
m1,m2

L0
M,%,m1,m2

(∆), (38)

where
⊔
m1,m2

is taken over all pairs (m1,m2) of positive integersm1,m2 satisfying (m1,m2) = 1 andm = m1m2.
Summarizing, we have the following decomposition of LM (∆) into the union of Γ0(M)-invariant sets:

LM (∆) =
⊔
l2|∆

⋃
%̄∈SM (∆/l2)

⊔
m1,m2

l · L0
M,%,m1,m2

(∆/l2), (39)

where
⊔
m1,m2

is taken over all pairs (m1,m2) of positive integers m1,m2 satisfying (m1,m2) = 1 and

(M,%, (%2 −∆/l2)/4M) = m1m2. (40)

We put L0(∆) := L0
1(∆).
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Proposition 2.6 ([9, Proposition, p.505]). Let M1 and M2 be positive integers satisfying M = M1M2 and
(M1,M2) = (m1,M2) = (m2,M1) = 1. Then, the mapping [Ma, b, c] 7→ [M1a, b,M2c] induces a bijection

L0
M,%,m1,m2

(∆)/Γ0(M) ↪→→ L0(∆)/ SL2(Z). (41)

We prove the following lemma needed in the proof of Proposition 2.10.60

Lemma 2.7. Let % ∈ SNp(∆) and %′ ∈ SN (∆) and let m,m′ be positive integers with m ‖ mNp
% and m′ ‖ mN

%′ .
The map [a, b, c] 7→ [a, b, c] induces a bijection

L0
Np,%,m,1(∆)/Γ0(Np) ↪→→ L0

N,%′,m′,1(∆)/Γ0(N). (42)

Moreover, if (m.p) = 1, then τ : [a, b, c] 7→ [a/p, b, pc] induces a bijection between the same spaces as above.

Proof. Taking (Np, 1) and (N, p) as the ordered pairs (M1,M2) in Proposition 2.6 for M := Np, we see that
both mappings induce two bijections

L0
Np,%,m,1(∆)/Γ0(Np) ↪→→ L0(∆)/ SL2(Z) (43)

by Proposition 2.6. On the other hand, taking (N, 1) as the ordered pair (M1,M2) in Proposition 2.6 for
M := N , we see that the mapping [a, b, c] 7→ [a, b, c] induces a bijection

L0(∆)/SL2(Z) ↪→→ L0
N,%′,m′,1(∆)/Γ0(N) (44)

by Proposition 2.6. Composing these maps, we obtain the assertion.

Assume that ∆ is a perfect square and let δ be a positive integer such that ∆ = δ2. For a positive integer M ′

with M ′ ‖M , we define a map wM ′ : SM (∆)→ SM (∆) by

wM ′(%) ≡

{
% (mod 2M/M ′),

−% (mod M ′).
(45)

Similarly to Atkin-Lehner involutions WM ′ on quadratic forms in [9, Section 1], these maps wM ′ are bijections
and satisfy the relation wM ′ ◦wM ′′ = wM ′M ′′/(M ′,M ′′)2 , so they form a group of order 2t, where t is the number
of distinct prime factors of M .65

Lemma 2.8. Let c be a positive integer with c ‖ M and d an integer with (d,M) = 1. Then we have the
decomposition into the disjoint union of Γ0(M)-invariant sets

LcM (c2d2) =
⊔
l|cd

⊔
M ′‖c−1M

l · L0
M,wM′ (cd/l),c/(c,l),1

(c2d2/l2), (46)

where
⊔
l|cd and

⊔
M ′‖c−1M is taken over all positive divisors l of cd and all positive integers M ′ with M ′ ‖ c−1M ,

respectively.

Proof. We put δ := cd and ∆ := δ2 for short. For a positive divisor l of δ and % ∈ SM (∆/l2), we denote by
m(l, %) the greatest common divisor of M , %, and (%2 −∆/l2)/4M . From

LM (∆) =
⊔
l|δ

⋃
%∈SM (∆/l2)

⊔
m‖m(l,%)

l · L0
M,%,m,m(l,%)/m(∆/l2)

8



((39)), we see that

LcM (∆) =
⊔
l|δ

⋃
%∈SM (∆/l2)

LcM (∆)l,%, where LcM (∆)l,% :=
⊔

m‖m(l,%)
lm≡0 (mod c)

l · L0
M,%,m,m(l,%)/m(∆/l2).

Since lm ≡ 0 (mod c) implies m(l, %) ≡ 0 (mod c/(c, l)) for m ‖ m(l, %), we see that the union runs over % ∈
SM (∆/l2) such thatm(l, %) ≡ 0 (mod c/(c, l)) we have Via the natural bijection fromG := {M ′ ∈ Z>0 |M ′ ‖M}
into the group of wM ′ ’s, we may regard G as a group and G acts on the set SM (∆/l2) for any positive divisor
l of δ. For a prime divisor q of M , we put vq := ordq(M), n := [vq/2], and,

Rq := {mpn
′
| m ∈ Z, 0 ≤ m ≤ (qn − 1)/2} with n′ :=

{
n if vq is even,

n+ 1 if vq is odd.
(47)

Notice that Rq ∪ (−Rq) is a complete system of representatives for {x̄ ∈ Z/qvqZ | x2 ≡ 0 (mod qvq )}. Let S
be the set of prime divisors q of M such that ∆/l2 ≡ 0 (mod qvq ). For r = (rq)q ∈ Πq∈SRq, we let %r be an
element in SM (∆/l2) such that for any prime factor q of 2M ,

%r ≡

{
rq (mod qvq ) if q ∈ S,
δ/l (mod qvq ) if q 6∈ S.

(48)

We then have the G-orbit decomposition SM (∆/l2) =
⊔

(rq)q∈Πq∈SRq
G · %r. Note that m(l, %) = m(l, %r) if

% ∈ G · %r and that for any % ∈ SM (∆/l2), we see that m(l, %) ≡ 0 (mod c/(c, l)) if and only if % ∈ G · δ/l, and
in this case m(l, %) = c/(c, l). We thus have⋃

%∈SM (∆/l2)
m(l,%)≡0 (mod c/(c,l))

LcM (∆)l,% =
⋃

%∈G·δ/l

LcM (∆)l,% =
⋃

%∈G·δ/l

l · L0
M,%,c/(c,l),1(∆/l2).

Here, for %1, %2 ∈ G · δ/l, we see that the intersection of l · L0
M,%1,c/(c,l),1

(∆/l2) and l · L0
M,%2,c/(c,l),1

(∆/l2) is

non-empty if and only if %1 ≡ %2 (mod 2M/c). Therefore, we have⋃
%∈G·δ/l

l · L0
M,%,c/(c,l),1(∆/l2) =

⊔
M ′‖c−1M

l · L0
M,wM′ (δ/l),c/(c,l),1

(∆/l2).

2.3. Relationship between a|D|(θ
Np
k,χ,D(f∗)) and a|D|(θ

N
k,χ,D(f))

Lemma 2.9. For any f∗ ∈ S2k+2(Np, χ2) and any n ∈ Z>0 with χ(−1)(−1)k+1n ≡ 0, 1 (mod 4), we have

an(θNpk,χ,D(f∗)) =
(
1− p−1

)
ck,χ,D

∑
t|c−1
χ N

µχDχ
−1
0 (t)t−k−1γNpk,χ,D(f∗;n, t), (49)

where recall that ck,χ,D, ∆n,t, and γNpk,χ,D(f ;n, t) are given by (20), (21), and (22), respectively.

Proof. We put a(t) := µχDχ
−1(t)t−k−1γNpk,χ,D(f∗;n, t) for short. We see that∑

t|c−1
χ Np

a(t) =
∑

t|c−1
χ N

(a(t) + a(pt)) . (50)
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By Theorem 2.2, it suffices to prove a(pt) = −p−1a(t). Let t | c−1
χ N and Q ∈ LptcχNp(∆n,pt)/Γ0(Np). No-

tice that the coefficients of the quadratic form Q are divisible by p. Since ωD(Q) = χD(p)ωD(p−1Q) and
Ik,χ(f∗, Q) = χ(p)pkIk,χ(f∗, p−1Q), we see that

γNpk,χ,D(f∗;n, pt) = χDχ(p)pkγNpk,χ,D(f∗;n, t).

We thus have a(pt) = µχDχ
−1(pt)(pt)−k−1 · χDχ(p)pkγNpk,χ,D(f∗;n, t) = −p−1a(t).70

For a formal power series
∑
n≥0 a(n)qn, we define∑

n≥0

a(n)qn

 |Vp :=
∑
n≥0

a(n)qpn. (51)

Proposition 2.10. Let f ∈ Snew
2k+2(N,χ2) be a primitive form with cχ ‖ N and D a fundamental discriminant

with χ(−1)(−1)k+1D > 0 and (D,Np) = 1. We put f∗ := f − β · f |Vp ∈ S2k+2(Np, χ2) with β ∈ C. Then,

a|D|(θ
Np
k,χ,D(f∗)) = 2

(
1− p−1

) (
1− χDχ−1(p)p−k−1β

)
· a|D|(θNk,χ,D(f)). (52)

Proof. By Lemma 2.9 and Theorem 2.2, we have

a|D|(θ
Np
k,χ,D(f∗)) = (1− p−1)ck,χ,D

∑
t|c−1
χ N

µχDχ
−1(t)t−k−1γNpk,χ,D(f∗; |D|, t), (53)

a|D|(θ
N
k,χ,D(f)) = ck,χ,D

∑
t|c−1
χ N

µχDχ
−1(t)t−k−1γNk,χ,D(f ; |D|, t)

= ck,χ,D · γNk,χ,D(f ; |D|, 1), (54)

where the last equation is due to (24). We put IQ(f) := ωD(Q)Ik,χ(f,Q) for short. Remember that, from the
notation (22), we have

γNpk,χ,D(f∗; |D|, t) =
∑

Q∈LtcχNp(∆|D|,t)/Γ0(Np)

IQ(f∗), (55)

γNk,χ,D(f ; |D|, t) =
∑

Q∈LtcχN (∆|D|,t)/Γ0(N)

IQ(f), (56)

Note that

γNpk,χ,D(f∗; |D|, t) = γNpk,χ,D(f ; |D|, t)− β · γNpk,χ,D(f |Vp; |D|, t). (57)

We put

a :=
∑

t|c−1
χ N

µχDχ
−1(t)t−k−1γNpk,χ,D(f∗; |D|, t). (58)

Then a|D|(θ
Np
k,χ,D(f∗)) = (1− p−1)ck,χ,D · a. Let t be a positive and square-free divisor of N/cχ so that tcχ ‖ N .

We put δt := tcχD for short so that ∆|D|,t = δ2
t . Taking (Np, tcχ, D) as the ordered triple (M, c, d) in Lemma

2.8, we have

LtcχNp(∆|D|,t) =
⊔
l|δt

⊔
M ′‖(tcχ)−1Np

L(l,M ′) = L(p) t Lp, (59)
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where we put

L(l,M ′) := l · L0
Np,wM′ (δt/l),tcχ/(tcχ,l),1

(∆|D|,t/l
2) (60)

L(p) :=
⊔
l|δt

⊔
M ′‖(tcχ)−1N

L(l,M ′) and Lp :=
⊔
l|δt

⊔
M ′‖(tcχ)−1N

L(l, pM ′). (61)

We thus have

γNpk,χ,D(f ; |D|, t) =
∑

Q∈L(p)/Γ0(Np)

IQ(f) +
∑

Q∈Lp/Γ0(Np)

IQ(f), (62)

γNpk,χ,D(f |Vp; |D|, t) =
∑

Q∈L(p)/Γ0(Np)

IQ(f |Vp) +
∑

Q∈Lp/Γ0(Np)

IQ(f |Vp). (63)

Taking (N, tcχ, D) as the ordered triple (M, c, d) in Lemma 2.8, we have

LtcχN (∆|D|,t) =
⊔
l|δt

⊔
M ′‖(tcχ)−1N

l · L0
N,wM′ (δt/l),tcχ/(tcχ,l),1

(∆|D|,t/l
2). (64)

By Lemma 2.7, both mappings [a, b, c] 7→ [a, b, c] and τ : [a, b, c] 7→ [a/p, b, pc] induce two bijections

L(p)/Γ0(Np) ↪→→ LtcχN (∆|D|,t)/Γ0(N) and Lp/Γ0(Np) ↪→→ LtcχN (∆|D|,t)/Γ0(N). (65)

Via two bijections (65) induced by [a, b, c] 7→ [a, b, c], we have∑
Q∈L(p)/Γ0(Np)

IQ(f) =
∑

Q∈Lp/Γ0(Np)

IQ(f) = γNk,χ,D(f ; |D|, t) (66)

and by (62), we have

γNpk,χ,D(f ; |D|, t) = 2 · γNk,χ,D(f ; |D|, t). (67)

Via two bijections (65) induced by τ : [a, b, c] 7→ [a/p, b, pc], we see that both
∑
Q∈L(p)/Γ0(Np) IQ(f |Vp) and∑

Q∈Lp/Γ0(Np) IQ(f |Vp) coincide with ∑
Q∈LtcχN (∆t)/Γ0(N)

Iτ−1(Q)(f |Vp). (68)

Here, by [9, Proposition 1 (Multiplicativity) and (Explicit formula)], we have ωD(τ−1(Q)) = χD(p)ωD(Q) and
by a simple calculation, we have

χ0(τ−1(Q)) = χ−1(p)χ0(Q), (69)∫
Cτ−1(Q)

f(pz)τ−1(Q)(z, 1)kdz = p−k−1

∫
CQ

f(z)Q(z, 1)kdz. (70)

Indeed, we see that the last equation as follows: Put [a, b, c] := Q. Then∫
Cτ−1(Q)

f(pz)τ−1(Q)(z, 1)kdz =

∫ ω′
τ−1(Q)

ωτ−1(Q)

f(pz)(paz2 + bz + c/p)kdz

= p−k
∫ p−1ω′Q

p−1ωQ

f(pz)(a(pz)2 + b(pz) + c)kdz

= p−k
∫ ω′Q

ωQ

f(z)(az2 + bz + c)kp−1dz = p−k−1

∫
CQ

f(z)Q(z, 1)kdz,
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where at the second equation from the bottom, we have made use of the transformation law with respect to
z 7→ p−1z. We thus have Iτ−1(Q)(f |Vp) = χDχ

−1(p)p−k−1IQ(f), and hence (68) coincides with

χDχ
−1(p)p−k−1γNk,χ,D(f ; |D|, t). (71)

By (63), we have

γNpk,χ,D(f |Vp; |D|, t) = 2 · χDχ−1(p)p−k−1γNk,χ,D(f ; |D|, t). (72)

From (57), (67) and (72), we have

a =
∑

t|c−1
χ N

µχDχ
−1(t)t−k−12

(
1− χDχ−1(p)p−k−1β

)
γNk,χ,D(f ; |D|, t)

= 2
(
1− χDχ−1(p)p−k−1β

)
γNk,χ,D(f ; |D|, 1), (73)

where the last equation is due to (24).

3. Cohomological interpretation of the D-th Shintani lifting

In this section, we will construct the cohomological D-th Shintani lifting ΘNp
k,χ,D satisfying the following

commutative diagram:

H1
c (Γ0(Np), L(2k, χ2;C))−

∼
Ash-Stevens

// SymbΓ0(Np)(L(2k, χ2;C))−
ΘNpk,χ,D // C[[q]]

H1
p (Γ0(Np), L(2k, χ2;C))−

?�

Manin-Drinfeld

OO

S2k+2(Np, χ2)
Eichler-Shimura

∼oo
θNpk,χ,D // S+

k+3/2(4Np, χ̃),
?�

q-expansion

OO

where all arrows are Hecke equivariant C-homomorphisms and we concentrate on the minus parts because of
ΘNp
k,χ,D(SymbΓ0(Np)(L(2k, χ2;Cp))+) = 0.75

3.1. Modular symbols and the Eichler-Shimura isomorphism

Let ∆0 be a subsemigroup of M2(Z)∩GL2(Q) containing Γ0(M). Let Div0(P1(Q)) be the group of divisors
of degree 0 supported on the rational cusps P1(Q) = Q ∪ {i∞} of the complex upper half plane H. We let ∆0

act on H by fractional linear transformations, i.e.,

γz :=

{
(az + b)(cz + d)−1 if det(γ) > 0,

(az̄ + b)(cz̄ + d)−1 if det(γ) < 0,

(
γ =

(
a b
c d

)
, z ∈ H

)
. (74)

This induces a natural action of ∆0 on H∗ := H ∪ P1(Q) and P1(Q). Then ∆0 acts on Div0(P1(Q)) by linear
fractional transformations. Let R be a commutative ring and E a left R[∆0]-module. We let γ ∈ ∆0 acts on
Φ ∈ HomZ(Div0(P1(Q)), E) by

(Φ|γ)(D) := γΦ(γD). (75)

Then the abstract Hecke algebra R[Γ0(M)\∆0/Γ0(M)] with respect to the Hecke pair (Γ0(M),∆0) acts on the
group of E-valued modular symbols over Γ0(M):

SymbΓ0(M)(E) := HomZ(Div0(P1(Q)), E)Γ0(M). (76)
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Let Ẽ be the locally constant sheaf on the open modular curve Y := Γ0(M)\H attached to E. Assume that

the orders of the torsion elements of Γ0(M) act invertibly on E. (77)

Then by [3, Proposition 4.2], there exists a Hecke equivariant canonical isomorphism

H1
c (Y, Ẽ)

∼−→ SymbΓ0(M)(E). (78)

Throughout the paper, we will identify the group of compactly supported cohomology classes with the group
of modular symbols under the assumption that (77). Note that (77) holds if either E is a vector space over a
field of characteristic 0, E is a Zp-module with p ≥ 5, or Γ0(M) is torsion-free. Fix a point x0 ∈ P1(Q). The
natural map SymbΓ0(M)(E) → H1(Γ0(M), E) sends a modular symbol Φ to the cohomology class represented
by the 1-cocycle γ 7→ Φ({γx0} − {x0}). This map yields a Hecke equivariant epimorphism

SymbΓ0(M)(E) � H1
p (Γ0(M), E). (79)

The matrix ι := diag(1,−1) induces natural involutions on one of the above cohomology groups H, and each of
cohomology groups H is decomposed into ±-eigenmodules H = H+ ⊕H− if 2 acts invertibly on the coefficient
module of H. Indeed, each cohomology class Φ decomposes as Φ = Φ+ + Φ−, where Φ± := 2−1(Φ ± Φ|ι).
For a non-negative integer n, let L(n,R) be the R-module of homogeneous polynomials in (X,Y ) of degree
n with coefficients in R. Let ε be an R-valued Dirichlet character modulo M . We denote by L(n, ε;R) the
R[Γ0(M)]-module L(n,R) endowed with the ε-twisted action, i.e., for γ ∈ Γ0(M) and P (X,Y ) ∈ L(n, ε;R),

(γP )(X,Y ) = ε(γ)P ((X,Y )tγ), (80)

where ε(γ) is the value of ε at the lower right entry of γ. Suppose that n! is invertible in R. We define a pairing
[ , ] : L(n,R)× L(n,R)→ R by[

n∑
i=0

ajX
n−iY j ,

n∑
i=0

biX
n−iY i

]
:=

n∑
i=0

(−1)i
(
n

i

)−1

aibn−i. (81)

We use the following two properties later:

[(aX − bY )n, P (X,Y )] = (−1)nP (b, a) (82)

[γP, γQ] = det γn[P,Q] (83)

for a, b ∈ R, P,Q ∈ L(n,R) and γ ∈ M2(R). If K is a field of characteristic zero, then by the Manin-Drinfeld
principle there exists a unique Hecke equivariant section

sk,ε : H1
p (Γ0(M), L(k, ε;K)) ↪→ SymbΓ0(M)(L(k, ε;K)) (84)

of the surjection (79). For each cusp form f ∈ Sk+2(M, ε), we define the L(k, ε;C)-valued differential form on
H:

ωf := f(z)(X − zY )kdz. (85)

Fix a point z0 ∈ H∗. We may attach a cohomology class ESk(f) ∈ H1
p (Γ0(M), L(k, ε;C)) defined by

ESk(f)(γ) :=

∫ γz0

z0

ωf (86)

for each γ ∈ Γ0(M). The integral is independent of the choice of the point z0. For either choice of sign ±, we
have a Hecke equivariant isomorphism

ES±k : Sk+2(M, ε)
∼−→ H1

p (Γ0(M), L(k, ε;C))±; f 7→ ES±k (f) := ESk(f)± (87)
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The additive map

Φf : Div0(P1(Q))→ L(k, ε;C) ; {c2} − {c1} 7→
∫ c2

c1

ωf (88)

defines a modular symbol in SymbΓ0(M)(L(k, ε;C)). Then ES±k (f) is the image of Φf under (79). Moreover,
the map

Sk+2(M, ε)→ SymbΓ0(M)(L(k, ε;C)) ; f 7→ Φf (89)

is Hecke equivariant. Hence, by the Hecke equivariance of the Eichler-Shimura isomorphism (87), we see that
for either choice of sign ±,

sk,ε
(
ES±k (f)

)
= Φ±f . (90)

3.2. The cohomological D-th Shintani lifting

Let k be a non-negative integer, M an odd positive integer, χ a Dirichlet character modulo M , and D a
fundamental discriminant with χ(−1)(−1)k+1D > 0. For each Q ∈ LM (∆) with a positive integer ∆ with
∆ ≡ 0, 1 (mod 4), let ∂CQ ∈ Div0(P1(Q)) be the boundary of CQ given by

∂CQ := {ω′Q} − {ωQ}, (91)

where recall that (ωQ, ω
′
Q) is defined by (17) and that CQ is the geodesic path oriented from ωQ to ω

′

Q. Let R

be a commutative Z[χ][χ(−1)1/2|D|1/2G(χ−1
0 )]-algebra such that (2k)! is invertible in R.

Definition 3.1. 1. For each Φ ∈ SymbΓ0(M)(L(2k, χ2;R)) and each Q ∈ LM (∆), we set

Jk,χ(Φ, Q) := χ0(Q) ·
[
Φ(∂CQ), Qk

]
∈ R, (92)

γMk,χ,D(Φ;n, t) :=
∑

Q∈LtcχM (∆n,t)/Γ0(M)

ωD(Q)Jk,χ(Φ, Q) (93)

2. For Φ ∈ SymbΓ0(M)(L(2k, χ2;R)), we define the n-th coefficient of ΘM
k,χ,D(Φ) ∈ R[[q]] by

an(ΘM
k,χ,D(Φ)) := ck,χ,D

∑
t|c−1
χ M

µχDχ
−1
0 (t)t−k−1γMk,χ,D(Φ;n, t) (94)

if χ(−1)(−1)k+1n ≡ 0, 1 (mod 4) and an(ΘM
k,χ,D(Φ)) := 0 otherwise. Here, recall that ck,χ,D and ∆n,t is80

defined by (20) and (21), respectively.

Proposition 3.2. 1. For any Φ ∈ SymbΓ0(M)(L(2k, χ2;R)), we have

ΘM
k,χ,D(Φ|ι) = −ΘM

k,χ,D(Φ). (95)

2. For any f ∈ S2k+2(M,χ2), we have

ΘM
k,χ,D(Φf ) = ΘM

k,χ,D(Φ−f ) = θMk,χ,D(f). (96)

3. If K is a field of characteristic zero and Φ belongs to the image of s2k,χ2 , then

ΘM
k,χ,D(Φ) ∈ S+

k+3/2(4M, χ̃;K). (97)
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Proof. The proof is essentially the same as [29, Proposition 4.3.3].

Let f ∈ S2k+2(M,χ2) be a Hecke eigenform, K the p-adic completion of the field obtained by adjoining the values
of χ and χ(−1)1/2|D|1/2G(χ−1

0 ) to the Hecke field Qf , and λf the OK-algebra homomorphism corresponding
to f . By [13, Proposition 3.3], the eigenmodule SymbΓ0(M)(L(k, χ2;OK))±[λf ] is free of rank one over OK . Let

∆±f be a generator of SymbΓ0(M)(L(k, χ2;OK))±[λf ]. This fact implies that there exists Ω(f)± ∈ C×p such that

∆±f = (Ω(f)±)−1 · Φ±f ∈ SymbΓ0(M)(L(k, χ2;OK))±[λf ]. (98)

Theorem 3.3. Let f ∈ S2k+2(Np, χ2) be a Hecke eigenform with χDχ(−1)(−1)k = −1.Then,

(Ω(f)−)−1 · θNpk,χ,D(f) = Θk,χ,D(∆−f ) ∈ S+
k+3/2(4Np, χ̃; p−1OK). (99)

Proof. Since ∆−f ∈ SymbΓ0(Np)(L(k, ε;OK))−[λf ], we have

χ0(Q) ·
[
∆−f (∂CQ), Qk

]
∈ OK . (100)

The assertion follows from Proposition 3.2.

For a Hecke eigenform f ∈ S2k+2(Np, χ2) with χDχ(−1)(−1)k = −1. We fix, once and for all, the complex
period Ω(f)− as (98) and define

θalg
D (f) := (Ω(f)−)−1p · θNpk,χ,D(f) ∈ OK [[q]]. (101)

4. Rigid analytic ingredients85

Let K be a complete discrete valuation field. The weight space W attached to OK [[Z×p ]] is the rigid analytic
variety whose Cp-valued points are given by

Homcont(Z×p ,C×p ) ∼= Homcont
OK -alg(OK [[Z×p ]],Cp). (102)

For a K-Banach algebra R and an R-valued point k ∈ W(R), we will use a notation tk instead of k(t) for
t ∈ Z×p . For a K-rigid analytic variety X, we denote by A(X) the ring of rigid analytic functions on X and
A◦(X) the subring consisting of elements that are power bounded with respect to the supremum semi-norm | |
(see [4, Definition 6.2.1/2]). By [4, Proposition 6.2.3/1], we have A◦(X) = {f ∈ A(X) | |f | ≤ 1}.

4.1. Coleman families90

In this subsection, we recall Coleman families given in [7] following [33]. Let K be a complete subfield of Cp
and f ∈ Sk0(Np, ε;K)α a Hecke eigenform with k0 − 1 > α. Assume that f is (p)-new, i.e., the primitive form
attached to f is a newform of level either N or Np. We denote by εp the restriction of ε to (Z/pZ)×. Then
there exists an integer 0 ≤ i ≤ p− 1 such that we have εp = τ i−k0 , where τ : (Z/pZ)× ↪→ Z×p is the Teichmüller
character. Let T (n) be a Hecke operator on overconvergent forms defined in [7, Lemma B5.1 and p.464] for each
positive integer n. Note that T (n) coincides with the usual Hecke operator Tn on classical modular forms Let
S(N, i) be the K-vector space of families of cuspidal overconvergent forms of tame level N and type i defined
in [7, Section B4]. Then by [7, Theorem B3.4], there exists a sufficiently large integer m > (2 − p)/(p − 1)
depending on α such that we can obtain a certain direct summand SB(N, i)α of the restriction of S(N, i) on
the affinoid disc B = BK [k0, p

−m] of radius p−m around k0 defined over K, which interpolates the K-vector
spaces Scl

k (ωi−k;K)α of classical cusp forms of level Np, (Z/pZ)×-character τ i−k and T (p)-slope α with varying
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integral weights k ∈ B(Z) := B(Cp) ∩ Z = {k ∈ Z | k ≡ k0 (mod pm)} greater than α+ 1. Here the classicality
of overconvergent forms of small T (p)-slope is given by [6, Theorem 6.1]. (Note that p−m and SB(N, i)α are
written as r and H in [7, the subsection “R-families” on the page 465], respectively.) The set of Cp-valued
points of B is given by

B(Cp) = {s ∈ OCp | |k0 − s|p ≤ p−m}. (103)

The K-affinoid algebra A(B) attached to B is the K-algebra K 〈(X − k0)/pm〉 of strictly convergent power
series in (X − k0)/pm with the indeterminate X (see [4, Proposition 6.1.4/4]). By [7, Theorem B3.4], we know
that

dimK(Scl
k0(τ i−k0 ;K)α) = dimK(Scl

k (τ i−k;K)α) =: d (104)

for all k in

WB := {k ∈ B(Z) | k ≡ k0 (mod p− 1) , k > α+ 1}. (105)

Then we see that SB(N, i)α is a projective A(B)-module of rank d by [7, Theorem A4.5], and for any k ∈WB ,
we have the specialization map

spk : SB(N, i)α � SB(N, i)α ⊗A(B) A(B)/Pk
∼−→ Scl

k (τ i−k;K)α, (106)

where Pk := (X − k) is the maximal ideal of A(B). For any k ∈ WB , we have τ i−k = τ i−k0 = εp. The (p)-new

subspace S
(p)-new
B (N, i)α of SB(N, i)α is defined as the intersection of kernels of all the degeneracy trace maps

from level Γ1(Np) to level Γ1(N ′p) for all positive divisors N ′ of N with N ′ 6= N . For any k ∈ WB , we define

the (p)-new subspace S
(p)-new
k (τ i−k;K)α of Scl

k (τ i−k;K)α as well. Then, we have the canonical isomorphism

S
(p)-new
B (N, i)α ⊗A(B) A(B)/Pk ∼= S

(p)-new
k (τ i−k;K)α (107)

of finite dimensional K-vector spaces (see [33, Proposition 2.1]).

Definition 4.1. We define the subspace Sss
k (K) of S

(p)-new
k (1p;K)α as the subspaces spanned by primitive

forms of level Np and character ε and old forms g and g|Vp coming from primitive forms g of level N and
character ε such that the characteristic polynomial of T (p) acting on the subspaces spanned by g and g|Vp has
no double roots (see [33, Definition 2.2]).95

Assume that i ≡ k0 (mod p− 1). By (107), we have the specialization map

spk : S
(p)-new
B (N, i)α � S

(p)-new
B (N, i)α ⊗A(B) A(B)/Pk

∼−→ S
(p)-new
k (1p;K)α (108)

for any k ∈WB . Then we put

Sss
B := sp−1

k0
(Sss
k0(K)) ⊂ S(p)-new

B (N, i)α. (109)

Definition 4.2. Let HB be the Hecke algebra defined as the A(B)-subalgebra of EndA(B)(SB(N, i)α) generated

by Hecke operators T (n) with all n ≥ 1. We denote by H(p)-new
B the image of the natural homomorphism

HB → EndA(B)(S
(p)-new
B (N, i)α) (110)

given by the restricting the Hecke action. Since the A(B)-submodule Sss
B defined by (109) is stable under the

action of H(p)-new
B , we can take the image hB of the natural homomorphism

H(p)-new
B → EndA(B)(S

ss
B ) (111)

given by restricting the Hecke action.
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Then hB is a K-affinoid algebra which is finite over A(B). We specialize hB at the closed point k0 of B as
hB ⊗A(B) A(B)/Pk0 and take the image hk0(K) of the natural homomorphism

hB ⊗A(B) A(B)/Pk0 → EndK(spk0(Sss
B )) = EndK(Sss

k0(K)). (112)

Then the Hecke algebra hk0(K) is a commutative semi-simple K-algebra by the theory of newforms and old
forms (see [19, Theorem 1]). By the definition of hB and hk0(K), we have the natural surjective A(B)-algebra
homomorphism

spk0 : hB � hk0(K). (113)

Let λ1, . . . , λr : hk0(K) → K be the K-algebra homomorphisms which correspond to all Hekce eigenforms
in Sss

k0
(K) via the duality between classical Hecke eigenforms and K-algebra homomorphisms from a classical

Hecke algebra into K (see [11, Proposition 3.21]) with some positive integer r ≤ d. Let hred
B := hB/

√
(0) be100

the reduction of hB . Since hk0(K) is reduced, we see that (113) factors through the surjective A(B)-algebra
homomorphism spk0 : hred

B � hk0(K).

Theorem 4.3 ([33, Theorem 2.2]). We have the following commutative diagram of A(B)-algebras

hred
B

spk0
����

∼ // A(B)r

mod Pk0
����

; T
� // (A1(T ), A2(T ), . . . , Ar(T ))

hk0(K)
∼ // Kr ; T � // (λ1(T ), λ2(T ), . . . , λr(T ))

(114)

after shrinking the disk B around the center k0 if necessary.

Let f ∈ Snew
k0

(N, ε)α be a primitive form with k0− 1 > α. Assume that α 6= (k0− 1)/2. Then the characteristic
polynomial of T (p) acting on the subspace spanned by f and f |Vp has no double roots. We can take the
root αp(f) of the polynomial satisfying ordp(αp(f)) = α. The p-stabilization f∗ of f is the eigenvector with
eigenvalue αp(f) of Tp on the subspace given by

f∗ := f − ε(p)pk0−1αp(f)−1 · f |Vp. (115)

The p-stabilization f∗ is the Hecke eigenform of level Np with the same eigenvalues as f outside p and T (p)-
eigenvalue ap(f

∗) = αp(f). Let K be the p-adic completion of the field Qf (αp(f)) obtained by adjoining αp(f)105

to the Hecke field Qf of f . Then f∗ ∈ Sss
k0

(K). Let λf∗ : hk0(K)→ K be the K-algebra homomorphism corre-

sponding to f∗ via the duality and Af∗ : hred
B → A(B) the A(B)-algebra homomorphism whose specialization

at k0 coincides with λf∗(spk0(T )) for any T ∈ hred
B , obtained in the theorem above. For all positive integers n,

we put an(f) := Af∗(T (n)) for short. Then the formal power series f =
∑
n≥1 an(f)qn ∈ A(B)[[q]] interpolates

Hecke eigenforms of level Np and we have the following:110

Theorem 4.4 ([33, Corollary 2.3]). Let f ∈ Snew
k0

(N, ε)α be a primitive form with k0 − 1 > α 6= (k0 − 1)/2,
and K a complete subfield of Cp containing the p-adic completion of the Hecke field Qf∗ . Then there exist a
K-affinoid disk Bf = BK [k0, p

−mf ] with a positive integer mf and a formal power series f ∈ A◦(Bf )[[q]] such
that for any k ∈ Wf := Bf (Z) ∩WB except for at most one (we call this element an exceptional weight), there
exists a primitive form fk ∈ Snew

k (N, ε;OK)α satisfying the following conditions:115

1. f(k) = f∗k .

2. f(k0) = f∗ (i.e., fk0 = f).

3. f(k1) ∈ Snew
k1

(Np, ε)α is primitive if there exists an exceptional weight k1 ∈Wf
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In particular, then there exists an integer m0 ≥ mf such that for any integer r > m0, we have

f∗k ≡ f∗ (mod pr−m0OK) if k ≡ k0 (mod (p− 1)pr). (116)

Remark 4.5. In order to obtain a disk Bf in the theorem above, we shrink the disk B if necessary so that the
following properties hold:120

1. Theorem 4.3 is applicable.

2. the coefficients an(f) of f satisfy |an(f)| ≤ 1, i.e., f ∈ A◦(Bf ).

3. the specializations f(k) have the same character ε.

It is possible to shrink B so that we have (2) by [7, the proof of Lemma B5.3] and (3) by [5, Lemma 5.5]. Thus.
we may take a disk B′ as the intersection of disks satisfying (1), (2), and (3).125

We refer to f as a Coleman family passing through f∗ as well as {f∗k}k∈Wf
obtained in the theorem above for

a primitive form f .

4.2. Analytic functions and distributions

Let W∗ be the rigid subspace of W consisting of accessible weights, i.e., weights k such that for any t ∈ Z×p ,

|k(t)p−1 − 1| < p−1/(p−1). Let U be an open K-affinoid subvariety of W∗. We define the universal weight
kU ∈ Homcont(Z×p , A◦(U)×) by tkU (x) := tx for all x ∈ U(K). Let R◦ denote one of the complete regular local

Noetherian rings OK and A◦(U). For R := R◦⊗̂OKK, we let kR ∈ W∗(R) be an element that requires kR = kU
if R = A(U). We denote by A(kR;R◦) the R◦-module consisting of functions f : Zp × Z×p → R◦ such that for

all t ∈ Z×p and (x, y) ∈ Zp ×Z×p , we have f(tx, ty) = tkRf(x, y) and f(z, 1) ∈ R◦〈z〉. We denote by A(kR, ε;R
◦)

the R◦[Γ0(Np)]-module A(kR;R◦) equipped with the ε-twisted action; we let γ ∈ Γ0(Np) act on f ∈ A(kR;R◦)
by

(γ · f)(x, y) = ε(γ)f((x, y)tγ), (117)

where ε(γ) is the value of ε on the lower right entry of γ and we assume that the restriction of kU and ε to
(Z/pZ)× coincide. We set

D(kR, ε;R
◦) := Homcont

R◦ (A(kR, ε;R
◦), R◦). (118)

and endow D(kR, ε;R
◦) with Γ0(Np)-action by

(µ|γ)(f) := µ(γ · f) (119)

for f ∈ A(kR, ε;R
◦). Now we have natural specialization maps

A(kU , ε;A
◦(U))→ A(k, ε;OK); f 7→ fk, (120)

ηk :D(kU , ε;A
◦(U))→ D(k, ε;OK);µ 7→ µk, (121)

where fk(x, y) := f(x, y)(k) and µk(f) := µ(fU )(k) with fU (x, y) := ykU f(x/y, 1) for f ∈ A(k, ε;OK). Let
tk be an element of A◦(U) which vanishes with order 1 at k and nowhere else. Then we have canonical exact
sequences of A◦(U)[Γ0(Np)]-modules

0→ A(kU , ε;A
◦(U))

tk−→ A(kU , ε;A
◦(U))→ A(k, ε;OK)→ 0, (122)

0→ D(kU , ε;A
◦(U))

tk−→ D(kU , ε;A
◦(U))

ηk−→ D(k, ε;OK)→ 0 (123)
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(see [1, Proposition 3.11]). Identifying L(k, ε;OK) = 〈Xk, Xk−1Y, . . . , Y k〉 with the OK [Γ0(Np)]-submodule
P(k, ε;OK) := 〈yk, yk−1x, . . . , xk〉 of A(k, ε;OK), and dualizing P(k, ε;OK) ⊂ A(k, ε;OK) give a K[Γ0(Np)]-
homomorphism

ρk : D(k, ε;OK) � L(k, ε;OK);µ 7→
k∑
i=0

µ(yk−ixi)Xk−iY i =

∫
Zp×Z×p

(yX − xY )kdµ(x, y). (124)

We define the A◦(U)[Γ0(Np)]-homomorphism φ◦k as

φ◦k : D(kU , ε;A
◦(Ω))

ηk−−−−� D(k, ε;OK)
ρk−−−−� L(k, ε;OK). (125)

We set A(kR, ε;R) := A(kR, ε;R
◦)⊗̂OKK and D(kR, ε;R) := D(kR, ε;R

◦)⊗̂OKK. Finally, we define the
A(U)[Γ0(Np)]-homomorphism φk by

φk; = φ◦k⊗̂OKK : D(kU , ε;A(U)) � L(k, ε;K), (126)

4.3. Slope ≤ h decompositon

Definition 4.6 ([2, Definition 4.1.1, 4.6.3 and 4.6.1 and Lemma 4.6.4]). Let K ⊂ Cp be a complete
subfield, A a commutative Noetherian K-Banach algebra with norm | · |A, Am the group of multiplicative units
in A with respect to | · |A, and H an A-module with u ∈ EndA(H). For a polynomial Q ∈ A[T ], we denote by

Q∗(T ) := T deg(Q)Q(1/T ). (127)

Let h ∈ Q and A[T ]≤h the set of polynomials Q ∈ A[T ] such that Q∗(0) ∈ Am and the slopes of Q are less than130

or equal to h (see [2] for the definition of slopes of a power series). A slope ≤ h decomposition of H with respect
to u is an A[u]-module decomposition H = H≤h ⊕H>h such that

1. H≤h =
⋃
Q∈A[T ]≤h

KerQ∗(u) is finitely generated as an A-module

2. Q∗(u)|H>h ∈ AutA(H>h) for any Q ∈ A[T ]≤h.

Theorem 4.7. Let h ∈ Q≥0.135

1. For any κ ∈ W(K), there exists an open K-affinoid subvariety U in W containing κ such that an A(U)-
module SymbΓ0(Np)(D(kU , ε;A(U)))± admits a slope ≤ h decomposition with respect to the Hecke operator
Tp.

2. The following control theorem holds:

SymbΓ0(Np)(D(kU , ε;A(U)))±≤h ⊗A(U) A(U)/Pk ∼= SymbΓ0(Np)(D(k, ε;K))±≤h, (128)

where Pk is the maximal ideal of A(U) generated by tk.
3. If k + 1 > h, the epimorphism ρk (124) induces the K[Γ0(Np)]-isomorphism

SymbΓ0(Np)(D(k, ε;K))±≤h
∼−→ SymbΓ0(Np)(L(k, ε;K))±≤h. (129)

Remark 4.8. The theorem above was quoted in [23] without proof (see [23, Theorem 4.6] for (1) and [23,140

Theorem 4.12] for (2) and (3)). For more details, we refer to [2] and [1, Section 3]. In addition, [24] is useful
especially for the comparison theorem (3).

5. p-Adic interpolation of the D-th Shintani lifting

Let f ∈ Snew
k0+2(N, ε)α be a primitive form with k0 + 1 > α 6= (k0 + 1)/2, and K the p-adic completion of

the field obtained by adjoining χ(−1)1/2|D|1/2G(χ−1
0 ) and the values of χ to the Hecke field Qf∗ . By Theorem145

4.4, there exists a K-affinoid disk Bf around k0 + 2 and a Coleman family f ∈ A◦(Bf )[[q]] passing through
f∗. By Theorem 4.7.(1), there exists an open K-affinoid subvariety U in W∗ containing (k0 + 2,1p) such that
an A(U)-module SymbΓ0(Np)(D(kU , ε;A(U)))± admits a slope ≤ α decomposition with respect to the Hecke
operator Tp.
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5.1. Overconvergent Hecke eigensymbols150

Lemma 5.1. Let K be a complete subfield of Cp. Let k, n ∈ OK and m ∈ Q≥0. Then,

σ+
n : K 〈(X − k)/pm〉 ∼−→ K 〈(X − (k + n)) /pm〉 ;X 7→ X − n (130)

is an isometric K-algebra isomorphism with respect to the supremum semi-norm. In particular, the pair of σ+
n

and

aσ+
n : BK [k + n, p−m]

∼−→ BK [k, p−m];m 7→ (σ+
n )−1(m) (131)

gives an isomorphism as K-affinoid varieties.

Proof. We put T2 := K〈X,Y 〉 for short. Let φ be the K-algebra endomorphism of T2 defined by φ(X) = X−n
and φ(Y ) = Y (see [4, Corollary 5.1.3/5]). Since the endomorphism defined by X 7→ X + n and Y 7→ Y gives
the inverse of φ, we see that φ ∈ AutK-alg(T2). Write a for the principal ideal of T2 generated by X − k− pmY ,
and hence φ(a) = (X−(k+n)−pmY ). Then the natural projection T2 � T2/φ(a) composed with φ induces the155

K-algebra isomorphism σ+
n by [4, Proposition 6.1.4/4]. Since σ+

n is an integral monomorphism, it is isometric
by [4, Proposition 6.2.2/1].

We put

Bσ = BK [k0, p
−m] := aσ+

2 (Bf ) ∩ U, B := BK [k0 + 2, p−m], (132)

WB,σ := {k ∈ Bσ(Z) | k ≡ k0 (mod p− 1), k + 1 > α}. (133)

We denote by σ := σ+
2 : A(Bσ) → A(B) the K-algebra isomorphism given by the lemma above. We let

S
(p)-new
B,σ (N, i)α denote S

(p)-new
B (N, i)α viewed as an A(Bσ)-module via σ and Sss

B,σ denote Sss
B viewed as an

A(Bσ)-submodule of S
(p)-new
B,σ (N, i)α. By (108), we have

spk,σ : S
(p)-new
B,σ (N, i)α �S

(p)-new
B,σ (N, i)α ⊗A(Bσ) A(Bσ)/Pk

∼−→S(p)-new
B,σ (N, i)α ⊗A(B) A(B)σ/Pk+2

∼−→ S
(p)-new
k+2 (1p;K)α (134)

for any k ∈WB,σ. Let {f1, . . . , fr} be a basis of Sss
B,σ consisting of Hecke eigenforms given by

fi :=
∑
n≥1

Ai(T (n))qn (135)

for the A(B)-algebra homomorphisms Ai : hred
B → A(B) obtained in Theorem 4.3. We may assume that

fi ∈ A◦(B) after shrinking B if necessary (Remark 4.5). For any k ∈WB,σ, we put

Sss,◦
B,σ :=

r⊕
i=1

A◦(B)σfi, Sss
k+2(OK) :=

r⊕
i=1

OKspk,σ(fi), (136)

where A◦(B)σ denote the admissible OK-algebra A◦(B) viewed as an A◦(Bσ)-algebra via σ : A◦(Bσ)→ A◦(B).
On the other hand, by Theorem 4.7, for any k ∈WB,σ, the surjective A(Bσ)[Γ0(Np)]-homomorphism φk (126)
induces the surjective Hecke equivariant A(Bσ)-homomorphism φ∗k

φ∗k : SymbΓ0(Np)(D(kBσ , ε;A(Bσ)))−≤α �SymbΓ0(Np)(D(kBσ , ε;A(Bσ)))−≤α ⊗A(Bσ) A(Bσ)/Pk
∼−→SymbΓ0(Np)(D(k, ε;K))−≤α

∼−→ SymbΓ0(Np)(L(k, ε;K))−≤α. (137)
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By (123), we see that φ∗k preserves the integral structure:

φ∗k : SymbΓ0(Np)(D(kBσ , ε;A
◦(Bσ)))−≤α � SymbΓ0(Np)(L(k, ε;OK))−≤α. (138)

Since Sss
k0+2(OK) is spanned by Hecke eigenforms g of level Np, the OK-linear extension of the map g 7→ ∆−g

gives the injective Hecke equivariant OK-homomorphism

ξk0 : Sss
k0+2(OK) ↪→ SymbΓ0(Np)(L(k0, ε;OK))−≤α. (139)

We put

Symbss
k0(OK) := ξk0(Sss

k0+2(OK)), Symbss,◦
Bσ

:= (φ∗k0)−1(Symbss
k0(OK)). (140)

Let hred
B,σ denote hred

B viewed as an A◦(Bσ)-algebra via σ : A◦(Bσ) → A◦(B). Let hred,◦
B,σ be the A◦(B)σ-

subalgebra of hred
B,σ generated by the Hecke eigensystems corresponding to the basis {f1, . . . , fr} of Sss

B,σ and
hk0+2(OK) the OK-subalgebra of hk0+2(K) generated by the Hecke eigensystems corresponding to the basis160

{spk,σ(f1), . . . , spk,σ(fr)} of Sss
k+2(OK). Then Symbss

k0(OK) (resp. Symbss,◦
Bσ

) is a module over hk0+2(OK) (resp.

hred,◦
B,σ ) via the homomorphisms which send T (`) to the usual Hecke operator T`.

Proposition 5.2. There exists a hred,◦
B,σ -isomorphism Ξ : Sss,◦

B,σ
∼−→ Symbss,◦

Bσ
such that the following diagram

commutes:

Sss,◦
B,σ

spk0,σ
����

Ξ // Symbss,◦
Bσ

φ∗k0
����

Sss
k0+2(OK)

ξk0 // Symbss
k0(OK)

(141)

after shrinking the disk Bσ around the center k0 if necessary.

Proof. We put A := A◦(Bσ), h := hred,◦
B,σ , S := Sss,◦

B,σ, and Symb := Symbss,◦
Bσ

for short. Let tk0 be a generator of

the maximal ideal Pk0 of A at the closed point k0. Since ξk0 gives the isomorphism S/tk0S
∼−→ Symb /tk0 Symb,

it suffices to prove that there exists a h-isomorphism Ξ : S
∼−→ Symb such that the following diagram commutes:

S

spk0,σ
����

Ξ // Symb

φ∗k0����
S/tk0S

ξk0 // Symb /tk0 Symb

(142)

after shrinking the disk Bσ around the center k0 if necessary. Let h(k0) := h ⊗A APk0 be the localization of
h at Pk0 . Since h(k0) is Noetherian and not Artinian, we see that the Krull dimension of h is 1 by Krull’s
principal ideal theorem (see [18, Theorem 13.5]). By [18, Theorem 2.3], the embedding dimension of h is 1,
and hence h is a regular local ring of Krull dimension 1. By [18, Theorem 19.2], the global dimension of h is
1, which implies Symb has a finite injective dimension less than or equal to 1 by [18, Lemma 2, Section 19].
Let S(k0) := S ⊗h h(k0) and Symb(k0) := Symb⊗hh(k0) be the localizations at Pk0 . Let t(k0) be the image of
tk0 in h(k0), and hence t(k0) belongs to the annihilator of h(k0)/Pk0h(k0). Since h(k0) is A-torsion-free and A is
an integral domain, we see that t(k0) is h(k0)-regular, S(k0)-regular, and Symb(k0)-regular. By [18, Lemma 2,
Section 18], we see that both S(k0) and Symb(k0) are maximal Cohen-Macaulay modules. By [8, Proposition
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21.13], there exists a h(k0)-isomorphism Ξ(k0) : S(k0)
∼−→ Symb(k0) such that the following diagram commutes:

S(k0)

spk0,σ
����

Ξ // Symb(k0)

φ∗k0����
S(k)/tkS(k0)

ξk0 // Symb(k0) /tk0 Symb(k0) .

(143)

Therefore we obtain the desired commutative diagram after shrinking the disk Bσ around the center k0 if
necessary.165

By the proposition above, we have the stronger result than [23, Theorem 4.13] in that we can take an error
term (denoted by Ωκ in [23]) of the p-adic interpolation as a p-adic unit uk as follows:

Theorem 5.3. Let f ∈ Snew
k0+2(N, ε)α be a primitive form with k0 + 1 > α 6= (k0 + 1)/2, K a complete subfield

of Cp containing the p-adic completion of the Hecke field Qf∗ , and f a Coleman family passing through f∗.
Then there exist a K-affinoid disk B = BK [k0, p

−m] with some positive integer m and a Hecke eigenvector170

Φf ∈ Symbss,◦
Bσ

with the same eigenvalues as f such that for any k ∈ WB,σ, there exists uk ∈ O×K such that we
have the following:

1. φ∗k(Φf ) = uk∆−f(k+2).

2. φ∗k0(Φf ) = ∆−f∗ (i.e., uk0 = 1).

Proof. The Hecke equivariant isomorphism Ξ as Proposition 5.2 induces a Hecke equivariant OK-isomorphism
Ξk as follows:

Sss,◦
B,σ

spk,σ
����

Ξ // Symbss,◦
Bσ

φ∗k
����

Sss
k+2(OK)α

Ξk // Symbss
k (OK)α,

(144)

We put Φf := Ξ(f). Then we see that φ∗k(Φf ) = Ξk(f(k + 2)) is a generator of λf(k+2)-eigenmodule

SymbΓ0(Np)(L(k, ε;OK))−[λf(k+2)]. (145)

By [13, Proposition 3.3], the λf(k+2)-eigenmodule is generated by ∆f(k+2) over OK . We thus the first assertion175

and the second assertion follows from Ξk0 = ξk0 .

We refer to Φf obtained in the theorem above as a Hecke eigensymbol attached to a Coleman family f .

5.2. A p-adic analytic family of the D-th Shintani lifting for a Coleman family

Hereafter, we assume that k0 is even and ε = χ2 with a Dirichlet character χ modulo N . We replace the
notation k0 by 2k0 so that we remark that the set WB,σ defined by (133) is replaced as follows:

WB,σ = {k ∈ Z | k ≡ 2k0 (mod (p− 1)pm), k + 1 > α} . (146)

We consider the family of θalg
D (f(2k + 2))’s for 2k ∈ WB,σ. Let n be a positive integer with χ(−1)(−1)k+1n ≡

0, 1 (mod 4). We define the n-th coefficient of a formal power series that interpolates the family of the D-th180

Shintani lifting below. Let t be a positive divisor of N/cχ and Q ∈ LtcχNp(∆n,t). Assume that ordp(n) ≤ 1.
Then we have the following:
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Lemma 5.4. Let c be the integer given by [a, b, c] = Q. Then we have p - c. In particular, for any (x, y) ∈
Zp × Z×p , we have Q(x, y) ∈ Z×p .

Proof. We put ∆ := ∆n,t for short. By (39), there exist a positive integer l with l2 | ∆, a integer % ∈185

SNp(∆/l
2), and m ‖ m(l, %) := (Np, %, (%2 − ∆/l2)/4Np) such that Q ∈ l · L0

Np,%,m,m(l,%)/m(∆/l2). Since

∆ 6≡ 0 (mod p2) from ordp(n) ≤ 1, we have p - l. If p | m(l, %), then we have p | % and %2 ≡ ∆/l2 (mod p2), and
hence ∆/l2 ≡ 0 (mod p2). This is a contradiction to ∆ 6≡ 0 (mod p2). Thus we have p - m(l, %), and hence p - c.

By the lemma above, we see that Q(x, y)kBσ is well-defined analytic function on Zp × Z×p . We define JQ ∈
HomA◦(Bσ)(D(kBσ , χ

2;A◦(Bσ)), A◦(Bσ)) by

JQ(µ) :=

∫
Zp×Z×p

Q(x, y)kBσ dµ(x, y) (147)

Then we have the following:

Lemma 5.5. For any 2k ∈WB,σ and µ ∈ D(kBσ , χ
2;A◦(Bσ)), we have

JQ(µ)(2k) = [φ2k(µ), Qk(X,Y )]. (148)

In particular, by Theorem 5.3, we have

χ0(Q)JQ(Φf (∂CQ))(2k) = u2k(Ω(f(2k + 2))−)−1Ik,χ(f(2k + 2), Q) (149)

Proof.

JQ(µ)(2k) =

∫
Zp×Z×p

Q(x, y)kdµ2k(x, y)

=

∫
Zp×Z×p

[
(yX − xY )2k, Qk(X,Y )

]
dµ2k(x, y)

=

[∫
Zp×Z×p

(yX − xY )2kdµ2k(x, y), Qk(X,Y )

]
= [φ2k(µ), Qk(X,Y )].

Definition 5.6. Let D be a fundamental discriminant with χ(−1)(−1)k0+1D > 0 and (D,Np) = 1, and
Φf ∈ Symbss

Bσ a Hecke eigensymbol attached to f . Let n be a positive integer with χ(−1)(−1)k+1n ≡ 0, 1 (mod 4)
and ordp(n) ≤ 1, t a positive divisor of N/cχ, and Q ∈ LtcχNp(∆n,t). We set

JBσ (Q) := χ0(Q)JQ(Φf (∂CQ)) ∈ A◦(Bσ). (150)

We put

an(θBσ,D(f)) :=
∑

t|c−1
χ N

µχDχ
−1
0 (t)t−kBσ−1

∑
Q∈LtcχNp(∆n,t)/Γ0(Np)

ωD(Q)JBσ (Q). (151)

Let m be a positive integer and v a non-negative integer such that 0 ≤ ordp(m/p
2v) ≤ 1. We put

am(θBσ,D(f)) := ap(f)vam/p2v (θBσ,D(f)) (152)

if χ(−1)(−1)k+1m ≡ 0, 1 (mod 4) and am(θBσ,D(f)) := 0 otherwise. For i ∈ Z/4Z, we define the n-th coefficient
of θiBσ,D(f) ∈ A◦(Bσ)[[q]] by

an(θiBσ,D(f)) :=
(
1− p−1

)
ciBσ,D · an(θBσ,D(f)), (153)

where

ciBσ,D := (−1)[(i+1)/2]χD(cχ)χ(−1)1/2χ−1(D)2kBσ+1c
kBσ
χ G(χ−1

0 ). (154)
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We then have the main theorem as follows:190

Theorem 5.7. Let f ∈ Snew
2k0+2(N,χ2)α be a primitive form with 2k0 + 1 > α 6= (2k0 + 1)/2 and cχ ‖ N , K the

p-adic completion of the field obtained by adjoining χ(−1)1/2|D|1/2G(χ−1
0 ) and the values of χ to the Hecke field

Qf∗ , D a fundamental discriminant with χ(−1)(−1)k0+1D > 0 and (D,Np) = 1. Then there exists a positive
integer m0 such that for any r > m0 + 1, if an integer k satisfies 2k + 1 > α and 2k ≡ 2k0 (mod (p − 1)pr),
then there exist a primitive form f2k+2 ∈ Snew

2k+2(N,χ2;OK)α such that

ekθ
alg
D (f∗2k+2) ≡ θalg

D (f∗) (mod pr−m0OK) (155)

for some ek ∈ O×K and f∗2k+2 lies in a Coleman family passing through f∗.

Proof. By Theorem 5.3, we have Φf ∈ Symbss,◦
Bσ

such that for any 2k ∈ WB,σ, there exists u2k ∈ O×K such
that φ∗2k(Φf ) = u2k∆f(2k+2) and u2k0 = 1. Recall that f(2k + 2) = f∗2k+2 for a primitive form f2k+2 ∈
Snew

2k+2(N,χ2;OK)α by Theorem 4.4. Set ek := (−1)[(k0+1)/2](−1)[(k+1)/2]u2k By Theorem 3.3 and Lemma 5.5,

we see that p · θk0Bσ,D(f) ∈ A◦(Bσ) has the specialization θk0Bσ,D(f)(2k) = ekθ
alg
D (f∗2k+2) ∈ S+

k+3/2(4Np, χ̃;OK).195

Remark 5.8. The p-adic interpolation of the classical Shintani lifting has already been done by Stevens [29]
and Park [23] for a Hida family and a Coleman family, respectively. Roughly speking, Park proved that for all
n ≥ 1, ∣∣∣Ωk · an(θalg

1 (f∗2k+2))− an(θalg
1 (f∗))

∣∣∣
p
< 1 (156)

for some Ωk ∈ K× in [23]. The significant difference between their results and our result above is that we
can take the error term ek of the p-adic interpolation as a p-adic unit, and hence the congruence makes sense.
Indeed, on the congruence (155), we see that an(θalg

D (f∗2k+2)) vanishes modulo p if and only if an(θalg
D (f∗))

vanishes modulo p. However, even if we assume Ωk ∈ OK on (156), the congruence

Ωk · an(θalg
1 (f∗2k+2)) ≡ an(θalg

1 (f∗)) (mod pr−m0OK) (157)

cannot tell us that θalg
1 (f∗2k+2) vanish modulo p if θalg

1 (f∗) vanish modulo p unless Ωk is a p-adic unit.

We keep the notation as in the theorem above. Since f2k+2 ⊗ χDχ−1
0 and f∗2k+2 ⊗ χDχ

−1
0 are Hecke eigenforms

of trivial character ([20, Lemma 4.3.10]), we have

L
(
k + 1, f∗2k+2 ⊗ χDχ−1

0

)
=
(
1− χDχ−1(p)pkap(f

∗
2k+2)−1

)
L
(
k + 1, f2k+2 ⊗ χDχ−1

0

)
(158)

by [20, Theorem 4.5.16]. We put

Lalg
(
k + 1, f∗2k+2 ⊗ χDχ−1

0

)
:=

k!L
(
k + 1, f∗2k+2 ⊗ χDχ

−1
0

)
πk+1Ω(f∗2k+2)−

∈ OK . (159)

Then by Proposition 2.10 and Theorem 2.4, we have

e−1
k a|D|(θ

k0
Bσ,D

(f))(2k) =(Ω(f∗2k+2)−)−1a|D|

(
θNpk,χ,D(f∗2k+2)

)
(160)

=2
(
1− p−1

)
|D|k+1/2c2k+1

χ RD(f2k+2)Lalg
(
k + 1, f∗2k+2 ⊗ χDχ−1

0

)
. (161)

Since 2
(
1− p−1

)
|D|kB+1/2N2kB+1 ∈ A(Bσ)×, we can normalize a|D|(θ

k0
Bσ,D

(f)) as

LD(f) :=
(

2
(
1− p−1

)
|D|kB+1/2c2kB+1

χ

)−1

a|D|(θ
k0
Bσ,D

(f)) ∈ A(Bσ) (162)
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so that for any 2k ∈WB,σ, we have

e−1
k LD(f)(2k) = RD(f2k+2)Lalg

(
k + 1, f∗2k+2 ⊗ χDχ−1

0

)
. (163)

Corollary 5.9. Let the notation and the assumptions be the same as Theorem 5.7. Then there exists a positive
integer r such that for any integer k satisfying 2k+ 1 > α and 2k ≡ 2k0 (mod (p− 1)pr), we have the following
non-negative equality:

ordp
(
RD(f2k+2)Lalg

(
k + 1, f∗2k+2 ⊗ χDχ−1

0

))
= ordp

(
RD(f)Lalg

(
k0 + 1, f∗ ⊗ χDχ−1

0

))
(164)

Moreover, if RD(f)L
(
k0 + 1, f ⊗ χDχ−1

0

)
6= 0, then we have

ordp
(
Lalg

(
k + 1, f∗2k+2 ⊗ χDχ−1

0

))
= ordp

(
Lalg

(
k0 + 1, f∗ ⊗ χDχ−1

0

))
≥ 0, (165)

in particular, L
(
k + 1, f2k+2 ⊗ χDχ−1

0

)
6= 0.

Proof. By Theorem 5.7, there exists a positive integer m0 such that for any r > m0 +1, if an integer k satisfies
2k + 1 > α and 2k ≡ 2k0 (mod (p− 1)pr), then

ekRD(f2k+2)Lalg
(
k + 1, f∗2k+2 ⊗ χDχ−1

0

)
≡ RD(f)Lalg

(
k0 + 1, f∗ ⊗ χDχ−1

0

)
(mod pr−m0OK) (166)

for some ek ∈ OK . Taking sufficiently large r, we have the first assertion. The last assertion follows from
Remark 2.5.(1)200

Remark 5.10. We keep the notation as in the corollary above. In general, RD(f2k+2) may vanish. However,
as seen in the proof above, if RD(f)L

(
k0 + 1, f ⊗ χDχ−1

0

)
6= 0, then RD(f2k+2) 6= 0 in a neighborhood of k0. In

other words, the the signatures of the eigenvalues of the initial primitive form f for the Atkin-Lehner involutions
coincide with that of f2k+2 for k sufficiently close to k0, p-adically (see Remark 2.5.(3)).

6. Application205

We apply Corollary 5.9 assuming that χ = 1, α = 0, and N is square-free.

6.1. Congruences between the central L-values attached to cusp forms of different weights

Theorem 6.1. Let f ∈ Snew
2k+2(N,1)0 and g ∈ Snew

2k′+2(N,1)0 be primitive forms with k, k′ ≥ 0, and O the ring of
integers of the p-adic completion of the field obtained by adjoining G(χD) to the composite field Qf∗Qg∗ . Assume
that f∗ ≡ g∗ (mod pr0O) for some positive integer r0 and that k ≡ k′ (mod (p − 1)pr) for a sufficiently large
integer r and that the Galois representation ρf∗ : Gal(Q̄/Q)→ GL2(O) attached to f∗ is residually irreducible.
Let D be a fundamental discriminant with (−1)k+1D > 0 and (D,Np) = 1. Then there exist ek′ ∈ O× such
that we have

RD(f)Lalg (k + 1, f∗ ⊗ χD) ≡ ek′RD(f2k′+2)Lalg (k′ + 1, g∗ ⊗ χD) (mod pr0O). (167)

Moreover, if RD(f)L (k + 1, f ⊗ χD) 6= 0, then we have

Lalg (k + 1, f∗ ⊗ χD) ≡ ek′Lalg (k′ + 1, g∗ ⊗ χD) (mod pr0O). (168)

Remark 6.2. When k = k′ in the theorem above, we can take ek′ = 1 by [30, Corollary 1.11]. Namely, the
result in this case is contained in [30, Corollary 1.11].
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Proof. Since f is p-ordinary and ρf∗ is residually irreducible, we may identify our periods defined by (98)
with canonical periods in the sense of [30] by [30, Theorem 1.13] and [31, Lemma 3.8]. By Theorem 4.4 and
Corollary 5.9, we have

f∗2k′+2 ≡ f∗ ≡ g∗ (mod pr0O), (169)

ek′RD(f2k′+2)Lalg
(
k′ + 1, f∗2k′+2 ⊗ χD

)
≡ RD(f)Lalg (k + 1, f∗ ⊗ χD) (mod pr0O) (170)

for some ek′,D ∈ O×. By [30, Corollary 1.11], the congruence (169) between f∗2k′+2 and g∗ implies

Lalg
(
k′ + 1, f∗2k′+2 ⊗ χD

)
≡ Lalg (k′ + 1, g∗ ⊗ χD) (mod pr0O). (171)

6.2. The Goldfeld conjecture210

We first recall Vatsal’s result on the Goldfeld conjecture in [30, Section 3]. Let E be an elliptic curve over
Q with a rational potint of order 3. Assume that E has good ordinary reduction at 3 and that the conductor
N of E is square-free. Let q - N be any odd prime with q ≡ 1 (mod 9). Let N1 be the product of primes
`|N at which E has nonsplit multiplicative reduction and N2 := qN/N1. We denote by fE ∈ Snew

2 (N,1)0 the
3-ordinary primitive form attached to E and fqE its q-stabilization.215

Theorem 6.3 ([30, Theorem 3.3]). For any negative fundamental discriminant D with (D,Nq) = 1, we
have the congruence

Lalg (1, fqE ⊗ χD) ≡ 1

2

∏
`|N1:prime

(1− χD(`)/`)
∏

`|N2:prime

(1− χD(`)) · L(0, χD)2 (mod 3).

Since the analytic class number formula shows that L(0, χD) equals the class number h(D) of Q(
√
D), up to a 3-

adic unit, the indivisibility of h(D) by 3 implies that we have L (1, fE ⊗ χD) 6= 0 for a fundamental discriminant
D with (D,Np) = 1, χD(`) = −1 for each prime ` | N2 and χD(`)/` ≡ −1 (mod 3) for each prime ` | N1 by the
theorem above (see [30, Corollary 3.4]). Then, Vatsal showed that MfE (X) � X (see [30, Corollary 3.5]) by
using a theorem of Nakagawa and Horie [21] to estimate a proportion of fundamental discriminants D satisfying220

3 - h(D) and the conditions which we mentioned above. By Corollary 5.9, we have the following:

Theorem 6.4. Let N ≥ 3 be a square-free odd integer and E an elliptic curve over Q of conductor N . Assume
that E has a rational potint of order 3, that E has good ordinary reduction at 3 and that if ` is a prime at which E
has non-split multiplicative reduction, then ` ≡ 2 (mod 3). Let f∗E be the 3-stabilization of fE. Then there exists
a positive integer r and for a non-negative integer k with k ≡ 0 (mod 2 · 3r), there exists a 3-ordinary primitive225

form f2k+2 ∈ Snew
2k+2(N,1;Qf∗E )0 such that for any embedding σ of Qf∗E into C, we have Mfσ2k+2

(X)� X, where

f∗2k+2 lies in a Coleman family passing through f∗E and fσ2k+2 ∈ Snew
2k+2(N,1) is the primitive form defined by

an(fσ2k+2) := an(f2k+2)σ.

Proof. Let D be a negative fundamental discriminant with (D,Np) = 1, χD(`) = −1 for each prime ` | N2 and
χD(`)/` ≡ −1 (mod 3) for each prime ` | N1. By assumption, we have χD(`) = 1 for each prime ` | N1. Recall230

that a`(fE) = −1 if ` | N1 and a`(fE) = 1 if ` | N2. We thus have χD(`) = −a`(fE) = w`(f) for any prime ` | N
(see (27)), and hence RD(fE) 6= 0. Then there exists a primitive form f2k+2 ∈ Snew

2k+2(N,1;Qf∗E )0 satisfying
Mf2k+2

(X)� X by Corollary 5.9. For any isomorphism σ of Qf∗E into C, we see that fσ2k+2 ∈ Snew
2k+2(N,1) is a

primitive form by [26, Proposition 1.2] and the theorem holds by [28, Theorem 1].

Example 6.5. Let E be the elliptic curve over Q given by the equation y2 + y = x3 + x2 − 9x− 15. Then E
has a rational point of order 3 and good ordinary reduction at 3 and is of conductor 19 ([30, Example 3.7]).
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Moreover, E has split multiplicative reduction at 19, and hence E satisfies the assumption of the theorem above.
Furthermore, equations

y2 + y = x3 + x2 + 9x+ 1, (172)

y2 + y = x3 + x2 − 23x− 50, (173)

y2 + y = x3 + x2 − x− 1, (174)

y2 + y = x3 + x2 − 49x+ 600, (175)

give elliptic curves over Q of conductor 35, 37, 51, and 77, respectively. They have split multiplicative reduction235

at any prime factor of their conductor and satisfy the assumption of the theorem above.
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