A *p*-adic analytic family of the *D*-th Shintani lifting for a Coleman family and congruences between the central *L*-values

Kenji MAKIYAMA

Department of Mathematics, Kyoto Sangyo University Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan

Abstract

We will construct a p-adic analytic family of D-th Shintani lifting generalized by Kojima and Tokuno for a Coleman family. Consequently, we will have a p-adic L-function which interpolates the central L-values attached to a Coleman family and obtain a congruence between the central L-values. Focusing on the case of p-ordinary, we will obtain two applications. One of them states that a congruence between Hecke eigenforms of different weights sufficiently close, p-adically, derives a congruence between their central L-values. The other one is about the Goldfeld conjecture in analytic number theory. We will show that there exists a primitive form satisfying the conjecture for each even weight sufficiently close to 2, 3-adically, thanks to a result of Vatsal.

Keywords: modular form, central *L*-value, *p*-adic *L*-function, Coleman family, Shintani lifting, modular symbol 2010 MSC: 11F33, 11F37, 11F27,

Contents

1	Introduction	2
2	Kojima and Tokuno's D-th Shintani lifting2.1Definition and properties2.2Integral binary quadratic forms on which $\Gamma_0(M)$ acts2.3Relationship between $a_{ D }(\theta_{k,\chi,D}^{Np}(f^*))$ and $a_{ D }(\theta_{k,\chi,D}^{N}(f))$	4 4 7 9
3	Cohomological interpretation of the D-th Shintani lifting3.1Modular symbols and the Eichler-Shimura isomorphism3.2The cohomological D-th Shintani lifting	12 12 14
4	Rigid analytic ingredients4.1Coleman families4.2Analytic functions and distributions4.3Slope $\leq h$ decompositon	15 15 18 19
5	 <i>p</i>-Adic interpolation of the <i>D</i>-th Shintani lifting 5.1 Overconvergent Hecke eigensymbols	19 20 22

Email address: kenji_m@cc.kyoto-su.ac.jp (Kenji MAKIYAMA)

6	App	blication	25
	6.1	Congruences between the central L-values attached to cusp forms of different weights	25
	6.2	The Goldfeld conjecture	26

1. Introduction

Hida is apparently the first to establish a theory of p-adic interpolation of modular forms of half-integral weight in [10]. He constructed A-adic cusp forms of half-integral weight for $SL(2)/\mathbb{Q}$ and proved a p-adic interpolation of Waldspurger's formula ([32, Corollary 2]) by using the Shimura correspondence. His result is essentially generalized by Ramsey to the case of finite slope in [25]. The results of Ramsey are not constrained to the setting individual families but apply more broadly to the eigencurve. On the other hand, after Hida's work in [10], Stevens established p-adic interpolation of the classical Shintani lifting for a Hida family ([29]). His result is essentially generalized by Park to the case of finite slope in [23]. However, their two results on the classical Shintani lifting leave some room for improvement since the error term of p-adic interpolation is not necessarily a p-adic unit (see Remark 5.8). The significant problem for p-adic interpolation is to deal with the error term of interpolation. To see this, let f be a function whose values at integer points are algebraic integers

and F a p-adic analytic function that has the interpolation property for any k in a neighborhood in the domain of F, $F(k) = e_k f(k)$ with some error term $e_k \neq 0$. Assume that the values of f and e_k are contained in the p-adic integer ring \mathbb{Z}_p for each k in some neighborhood B for simplicity. This implies that for $k, k' \in B$, we have $e_k f(k) \equiv e_{k'} f(k') \pmod{p}$. The problem is that the obtained congruence may be trivial if both e_k and $e_{k'}$

¹⁵ have $e_k f(k) = e_k f(k)$ (mod p). The problem is that the obtained congruence may be trivial if both e_k and $e_{k'}$ are not *p*-adic units. In [16], Kohnen and Zagier proved an explicit Waldspurger's formula by using the *D*-th Shintani lifting for a fundamental discriminant *D*. We remark that the *D*-th Shintani lifting coincides with the classical Shintani lifting when D = 1 at least for the full modular case ([16, Corollary 8]). The main purpose of this paper is to present an improvement of Park's construction of a *p*-adic family of the classical Shintani lifting for a Coleman family (see Theorem 5.7) and interpolate the central *L*-values attached to primitive forms lying in a Coleman family (see Corollary 5.9).

NOTATION AND TERMINOLOGY. Throughout the paper, we fix an odd prime p, a positive integer N satisfying (N, 2p) = 1 and a non-negative rational number α . We assume that $Np \geq 4$ to ensure that $\Gamma_1(Np)$ is torsion-free. We denote by $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_p$ an algebraic closure of the rational number field \mathbb{Q} , and the p-adic number field \mathbb{Q}_p , respectively. Let \mathbb{C} be the complex number field and \mathbb{C}_p the p-adic completion of $\overline{\mathbb{Q}}_p$. We fix two embeddings $i_{\infty}: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $i_p: \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p$, and an isomorphism $\mathbb{C}_p \xrightarrow{\sim} \mathbb{C}$ which commutes with i_{∞} and i_p . Let ord_p be the normalized p-adic additive valuation on \mathbb{C}_p so that $\operatorname{ord}_p(p) = 1$ and $|\cdot|_p$ the absolute value given by ord_p . For $z \in \mathbb{C}$, we define $\sqrt{z} = z^{1/2}$ so that $-\pi/2 < \arg(z^{1/2}) \leq \pi/2$ and put $z^{k/2} := (\sqrt{z})^k$ for each integer k. We denote by $\Gamma_0(M)$ the congruence subgroup of $\operatorname{SL}_2(\mathbb{Z})$ consisting of matrices whose left lower entry is divisible by M. We denote by $S_k(M,\varepsilon)$ the space of $\Gamma_0(M)$ -cusp forms of weight k with a Dirichlet character ε modulo M. We denote by $S_k^{\operatorname{new}}(M,\varepsilon)$ the orthogonal complement of the subspace of old forms of level N in $S_k(M,\varepsilon)$ with respect to the Petersson inner product. For a modular form f, we denote by $a_n(f)$ the n-th Fourier coefficient of f and put $L(s, f) := \sum_{n\geq 1} a_n(f)n^{-s}$. We call $f \in S_k(M,\varepsilon)$ a Hecke eigenform of level M if f satisfies $f|T_n = a_n(f)f$ for the usual Hecke operators T_n on $S_k(M,\varepsilon)$ for all positive integers n. We refer to a Hecke eigenform of level M in $S_k^{\operatorname{new}}(M,\varepsilon)$ as a primitive form of level M. For a Hecke eigenform $f \in S_k(M,\varepsilon)$, the T_p -slope of f is defined as $\operatorname{ord}_p(a_p(f))$. We denote by $S_k(M,\varepsilon)_\alpha$ the subspace of $S_k(M,\varepsilon)$ spanned by the generalized eigenspaces for eigenvalues λ of T_p with $\operatorname{ord}_p(\lambda) = \alpha$. Let $\mathbb{Z}[\varepsilon]$ be the ring generated by the values of ε over \mathbb{Z} . For a $\mathbb{Z}[\varepsilon]$ -algebra R

$$S_k(M,\varepsilon;R)_{\alpha} := (S_k(M,\varepsilon)_{\alpha} \cap \mathbb{Z}[\varepsilon][[q]]) \otimes_{\mathbb{Z}[\varepsilon]} R,$$
(1)

$$S_k^{\text{new}}(M,\varepsilon;R)_{\alpha} := (S_k^{\text{new}}(M,\varepsilon) \cap S_k(M,\varepsilon;\mathbb{Z}[\varepsilon])_{\alpha}) \otimes_{\mathbb{Z}[\varepsilon]} R.$$
(2)

For a Hecke eigenform f, we denote by \mathbb{Q}_f the subfield of \mathbb{C} generated over \mathbb{Q} by the eigenvalues of f for the Hecke operators T_n for all positive integers n and refer to it as the Hecke field of f. For a Dirichlet character

 χ , we denote by χ_0 the primitive character attached to χ , c_{χ} the conductor of χ , and $G(\chi_0)$ the Gauss sum of χ_0 , i.e., $G(\chi_0) := \sum_{a=0}^{c_{\chi}-1} \chi_0(a) \exp(2\pi \sqrt{-1}a/c_{\chi})$. For $f \in S_k(M, \varepsilon)$ and a primitive character ψ , we denote by $f \otimes \psi \in S_k(L, \varepsilon \psi)$ the ψ -twist of f defined by $a_n(f \otimes \psi) := \psi(n)a_n(f)$ for all $n \ge 1$, where L is the least common multiple of M, c_{ψ}^2 , and $c_{\psi}c_{\varepsilon}$ ([20, Lemma 4.3.10.(2)]). For a non-zero integer a, we let χ_a denote the *Kronecker symbol* $\chi_a(b) := \left(\frac{a}{b}\right)$ defined by [20, (3.1.9)]. We call D a fundamental discriminant if D is either 1 or the discriminant of a quadratic field. We denote by 1 the trivial Dirichlet character. By $d \parallel n$, we mean $d \mid n$ and (d, n/d) = 1.

We state the objectives of the paper. Let $f \in S_{2k_0+2}^{\text{new}}(N,\chi^2)_{\alpha}$ be a primitive form with $2k_0 + 1 > \alpha \neq (2k_0 + 1)/2$, $f^* \in S_{2k_0+2}(Np,\chi^2)_{\alpha}$ the *p*-stabilization, which is a Hecke eigenform of level Np with the same T_q -eigenvalues as f for any q except for q = p (see (115)), D a fundamental discriminant with (D,Np) = 1 and $\chi_D\chi(-1)(-1)^{k_0} = -1$, and K the *p*-adic completion of the number field obtained by adjoining the values of χ and $\chi(-1)^{1/2}|D|^{1/2}G(\chi_0^{-1})$ to the Hecke field \mathbb{Q}_{f^*} . Then there exists a *Coleman family* $\{f_{2k+2}^*\}_k$ passing through f^* , which consists of the *p*-stabilizations f_{2k+2}^* of each primitive form $f_{2k+2} \in S_{2k+2}^{\text{new}}(N,\chi^2;\mathcal{O}_K)_{\alpha}$ for each 2k in

$$W := \{k \in \mathbb{Z} \mid k \equiv 2k_0 \pmod{(p-1)p^m}, \ k+1 > \alpha\},\tag{3}$$

satisfying $f_{2k+2}^* \equiv f_{2k_0+2}^* = f^* \pmod{p}$ (see Theorem 4.4). We consider the *D*-th Shintani lifting $\theta_{k,\chi,D}^{Np}(f_{2k+2}^*)$, which is a cusp form of half-integral weight k + 3/2 in the Kohnen plus space (see (12) for $\theta_{k,\chi,D}^{Np}$ and (7) for the Kohnen plus space). Let $\Omega(f_{2k+2}^*)^- \in \mathbb{C}_p^{\times}$ be the period attached to f_{2k+2}^* obtained by the fact that the f_{2k+2}^* -part of a group of modular symbols is free of rank one over the ring of integer \mathcal{O}_K of K (see [13, Proposition 3.3]). By the virtue of cohomological interpretation of the *D*-th Shintani lifting, we can define the algebraic part of the |D|-th Shintani lifting

$$\theta_D^{\text{alg}}(f_{2k+2}^*) := (\Omega(f_{2k+2}^*)^{-})^{-1} p \cdot \theta_{k,\chi,D}^{Np}(f_{2k+2}^*), \tag{4}$$

has the Fourier coefficients in \mathcal{O}_K (Theorem 3.3), where we use our hypothesis $Np \geq 4$ to ensure that $\Gamma_0(Np)$ is torsion-free and identify modular symbols with compactly supported cohomology (see Section 3). We will interpolate a family $\{\theta_D^{\text{alg}}(f_{2k+2}^*)\}_k$, *p*-adically. According to Theorem 5.3, we may take the error terms of the *p*-adic interpolation as *p*-adic units. Then, we will prove the main theorem that for *k* sufficiently close to k_0 , *p*-adically, $\theta_D^{\text{alg}}(f_{2k+2}^*)$ is congruent to $\theta_D^{\text{alg}}(f^*)$ modulo *p*-power, up to a *p*-adic unit (Theorem 5.7). The remarkable property of the *D*-th Shintani lifting is that $a_{|D|}(\theta_{k,\chi,D}^N(f_{2k+2}))$ equals $L(k+1, f \otimes \chi_D \chi_0^{-1})$, up to an explicit constant (Theorem 2.4). Since f_{2k+2}^* is not a primitive form of level Np, we cannot immediately find a relation between $a_{|D|}(\theta_{k,\chi,D}^{Np}(f_{2k+2}))$ and the central *L*-value attached to f_{2k+2}^* . However, we fortunately see that $a_{|D|}(\theta_{k,\chi,D}^{Np}(f_{2k+2}))$ equals $a_{|D|}(\theta_{k,\chi,D}(f_{2k+2}))$, up to the product of $2(1-p^{-1})$ and the *p*-Euler factor (Proposition 2.10). Then we obtain a congruence between the central *L*-values attached to f^* and f_{2k+2}^* (Corollary 5.9). The final section of the paper gives two applications under the assumption that $\chi = 1$, $\alpha = 0$, and N is square-free. One of them states that a congruence between Hecke eigenforms of different weights sufficiently close, *p*-adically, derives a congruence between their central *L*-values, up to a *p*-adic unit (Theorem 6.1). The other application is for the Goldfeld conjecture in analytic number theory. To state the conjecture, let *f* be a primitive form of weight 2k + 2 and *D* a fundamental discriminant. For a positive real number *X*, we define the number

$$M_f(X) := \sharp \{ |D| \le X \mid L(k+1, f \otimes \chi_D) \neq 0 \}.$$
(5)

Then the conjecture states that

$$M_f(X) \gg X,\tag{6}$$

35

i.e., there exists a positive constant c such that for sufficiently large X we have $M_f(X) > cX$. Currently, it seems that the best estimate in general case is due to Ono and Skinner [22], who showed $M_f(X) \gg X/\log X$ (see [22, Corollary 3]). Suppose that $k + 1 \ge 6$ is even. Kohnen [15] proved that there exists a Hecke eigenform $f \in S_{2k+2}(SL_2(\mathbb{Z}))$ satisfying (6) (see [15, Corollary 1]). Moreover, he pointed out that (6) holds for any Hecke eigenform $f \in S_{2k+2}(SL_2(\mathbb{Z}))$ (see [15, Corollary 2]) assuming a conjecture of Maeda (see [12, Conjecture 1.2]) with respect to each even integer $k + 1 \ge 6$. Vatsal showed that a primitive form f attached to a certain elliptic curve over \mathbb{Q} of conductor N with a rational point of order 3 and good ordinary reduction at 3 satisfies (6). Taking p = 3 (and hence $N \ge 3$ by the assumption that N is odd with $Np \ge 4$) in Theorem 5.7, we expand

this result into the case of higher weights (Theorem 6.4). Our result may be regarded as a generalization of

2. Kojima and Tokuno's *D*-th Shintani lifting

Kohnen's result in [15] to the case of odd square-free level $N \geq 3$.

2.1. Definition and properties

Let k be a non-negative integer, M an odd positive integer and χ a Dirichlet character modulo M. Put $\tilde{\chi} := \chi_{\epsilon} \chi$ with $\epsilon := \chi(-1)$. We denote the Kohnen plus space by

$$S_{k+3/2}^{+}(4M,\tilde{\chi}) := \left\{ g \in S_{k+3/2}^{\mathrm{Sh}}(4M,\tilde{\chi}) \mid a_n(g) = 0 \text{ if } \chi(-1)(-1)^{k+1}n \equiv 2,3 \pmod{4} \right\},$$
(7)

where $S_{k+2/3}^{\text{Sh}}(4M, \tilde{\chi})$ is the space of cusp forms of half-integral weight k + 3/2 with level 4M and a character $\tilde{\chi}$ modulo 4M in the sense of Shimura [27, p. 447]. Let D be a fundamental discriminant with $\chi(-1)(-1)^{k+1}D > 0$ and (D, M) = 1. For $g \in S_{k+3/2}^+(4M, \tilde{\chi})$ and each prime ℓ , the Hecke operator T_{ℓ^2} is defined by

$$a_n(g|T_{\ell^2}) = a_{\ell^2 n}(g) + \chi_{(-1)^{k+1}n} \tilde{\chi}(\ell) \ell^k a_n(g) + \chi(\ell^2) \ell^{2k-1} a_{n/\ell^2}(g)$$
(8)

for any positive integer n with $\chi(-1)(-1)^{k+1}n \equiv 0, 1 \pmod{4}$. We define the *D*-th Shimura lifting $\operatorname{Sh}_{k,\chi,D}^M$ by

$$\operatorname{Sh}_{k,\chi,D}^{M}(g) := \sum_{n \ge 1} \left(\sum_{d|n} \chi_D \chi(d) d^k a_{n^2|D|/d^2}(g) \right) q^n$$
(9)

(see [17, (3-1)]). As Kohnen pointed out in his paper [14, p. 241, l. 4-9], the image of the *D*-th Shimura lifting $\operatorname{Sh}_{k,\chi,D}^{M}$ is contained in the space of cusp forms under the assumption that

either
$$k \ge 1$$
, M is square-free, or cubic-free and $\chi = \mathbb{1}$. (10)

Then the following theorem is a restatement of [17, Theorem 3.1] including the case of $k \ge 0$.

Theorem 2.1. We have the commutative diagram:

for all primes ℓ . In this sense, the D-th Shimura lifting $\operatorname{Sh}_{k,\chi,D}^M$ is Hecke equivariant.

Now we define the *D*-th Shintani lifting $\theta_{k,\chi,D}^M$ as the adjoint mapping of $\operatorname{Sh}_{k,\chi,D}$ with respect to the Petersson inner product \langle , \rangle , i.e.,

$$\langle g, \theta^M_{k,\chi,D}(f) \rangle = \langle \mathrm{Sh}^M_{k,\chi,D}(g), f \rangle$$
 (12)

for every $g \in S_{k+3/2}(4M, \tilde{\chi})$ and $f \in S_{2k+2}(M, \chi^2)$. Then the *D*-th Shintani lifting $\theta^M_{k,\chi,D}$ is Hecke equivariant, i.e., $\theta^M_{k,\chi,D}(f)|T_{\ell^2} = \theta^M_{k,\chi,D}(f|T_\ell)$ for all primes ℓ . Whenever we use $\theta^M_{k,\chi,D}$, we assume that (10). Let Δ be a non-zero integer with $\Delta \equiv 0, 1 \pmod{4}$. We denote by [a, b, c] the binary quadratic form defined by

$$[a, b, c](X, Y) = aX^{2} + bXY + cY^{2}$$
(13)

and call $b^2 - 4ac$ the discriminant. We denote by $\mathcal{L}(\Delta)$ the set of all integral binary quadratic forms with discriminant Δ . For each integer M, we set

$$\mathcal{L}_M(\Delta) := \{ [a, b, c] \in \mathcal{L}(\Delta) \mid a \equiv 0 \pmod{M} \}.$$
(14)

We let $\gamma \in \mathrm{SL}_2(\mathbb{Z})$ act on $[a, b, c] \in \mathcal{L}_M(\Delta)$ by

$$([a,b,c]\circ\gamma)(X,Y) := [a,b,c]((X,Y)^t\gamma).$$

$$(15)$$

Letting $\gamma = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$, we see that the action above is as follows: $[a, b, c] \circ \gamma = [ax^{2} + bxz + cz^{2}, 2axy + byz + bxw + 2czw, ay^{2} + byw + cw^{2}]$ (16)

For each $Q = [a, b, c] \in \mathcal{L}_M(\Delta)$, we associate it with the pair (ω_Q, ω_Q') of points in $\mathbb{P}^1(\mathbb{R}) = \mathbb{R} \cup \{i\infty\}$ given by

$$(\omega_Q, \omega_Q') := \begin{cases} \left((-b - 2\sqrt{\Delta})/2a, \ (-b + 2\sqrt{\Delta})/2a \right) & \text{if } a \neq 0, \\ (-c/b, \ i\infty) & \text{if } a = 0 \text{ and } b > 0, \\ (i\infty, \ -c/b) & \text{if } a = 0 \text{ and } b < 0, \end{cases}$$
(17)

and the oriented geodesic path C_Q defined as the image in $\Gamma_0(M) \setminus \mathfrak{H}$ of the semicircle $a|z|^2 + b\operatorname{Re} z + c = 0$ oriented from ω_Q to ω'_Q . We set $\chi_0(Q) := \chi_0(c)$. A simple verification shows that for each $f \in S_{2k+2}(M, \chi^2)$, the integral

$$I_{k,\chi}(f,Q) := \chi_0(Q) \int_{C_Q} f(z)Q(z,1)^k dz$$
(18)

absolutely converges and depends only on the $\Gamma_0(M)$ -orbit of Q in $\mathcal{L}_M(\Delta)$. Then by the same computation as in [17], we have the following explicit expressions of the Fourier coefficients of $\theta^M_{k,\chi,D}$.

Theorem 2.2 ([17, Theorem 3.2]). For any $f \in S_{2k+2}(M, \chi^2)$ and any $n \in \mathbb{Z}_{>0}$ with $\chi(-1)(-1)^{k+1}n \equiv 0, 1 \pmod{4}$. Then

$$a_n(\theta_{k,\chi,D}^M(f)) = c_{k,\chi,D} \sum_{t \mid c_\chi^{-1}M} \mu \chi_D \chi_0^{-1}(t) t^{-k-1} \gamma_{k,\chi,D}^M(f;n,t),$$
(19)

where we put

$$c_{k,\chi,D} := (-1)^{[(k+1)/2]} 2^{k+1} \chi_D(c_\chi) \chi(-1)^{1/2} \chi^{-1}(D) c_\chi^k G(\chi_0^{-1}),$$
(20)

$$\Delta_{n,t} := t^2 c_{\chi}^2 |D|n, \tag{21}$$

$$\gamma_{k,\chi,D}^{M}(f;n,t) := \sum_{Q \in \mathcal{L}_{tc_{\chi}M}(\Delta_{n,t})/\Gamma_{0}(M)} \omega_{D}(Q) I_{k,\chi}(f,Q),$$
(22)

and let [x] be the greatest integer not greater than x, μ the Möbius function and ω_D the generalized genus character as in [14]. Furthermore, if $f \in S_{2k+2}^{\text{new}}(M, \chi^2)$, then

$$a_n(\theta^M_{k,\chi,D}(f)) = c_{k,\chi,D}\gamma^M_{k,\chi,D}(f;n,1).$$
(23)

Remark 2.3. Since the sum (22) equals the Petersson inner product of f and the oldform of level M for $t \neq 1$, (see [17, (3-16]), we see that

$$\gamma^M_{k,\chi,D}(f;n,t) = 0 \tag{24}$$

for $t \neq 1$ if f is a newform of level M. This is why we obtain the last assertion in the theorem above.

Suppose that $c_{\chi} \parallel M$. Let ℓ be a prime factor of M/c_{χ} , We put $v_{\ell} := \operatorname{ord}_{\ell}(M/c_{\chi}) = \operatorname{ord}_{\ell}(M)$. Let γ_{ℓ} be an element in $\operatorname{SL}_2(\mathbb{Z})$ such that

$$\gamma_{\ell} \equiv \begin{cases} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} & (\text{mod } \ell^{2v_{\ell}}), \\ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & (\text{mod } (M/\ell^{v_{\ell}})^2). \end{cases}$$
(25)

We put $\eta_{\ell} := \gamma_{\ell} \cdot \text{diag}(\ell^{v_{\ell}}, 1)$ (see [20, (4.6.21)]). We define the eigenvalue of f for the Atkin-Lehner involution η_{ℓ} by

$$w_{\ell}(f) := \chi^2(\ell^{v_{\ell}})a_1(f|_{2k+2}\eta_{\ell}).$$
(26)

If $v_{\ell} = 1$, then we have $a_1(f|_{2k+2}\eta_{\ell}) = -\chi^{-2}(\ell)\ell^{-k}a_{\ell}(f)$ by [20, Corollary 4,6,18.(2)] and hence

$$w_{\ell}(f) = -\ell^{-k}a_{\ell}(f) \in \{\pm 1\}$$
(27)

by [20, Theorem 4.6.17.(2)].

Theorem 2.4 ([17, Theorem 4.2 and (4-12)]). Let $f \in S_{2k+2}^{\text{new}}(M,\chi^2)$ be a primitive form. Suppose that $c_{\chi} \parallel M$. We put

$$R_D(f) := \prod_{\ell} \left(1 + \chi_D \chi(\ell^{\nu_\ell}) w_\ell(f) \left(\frac{1 - \chi_D \chi^{-1}(\ell) \ell^{-k-1} a_\ell(f)}{1 - \chi_D \chi(\ell) \ell^{-k-1} a_\ell(f)^c} \right) \right),$$
(28)

where \prod_{ℓ} is taken over all prime factors ℓ of M/c_{χ} and $a_{\ell}(f)^c$ is the complex conjugate of $a_{\ell}(f)$. Then

$$a_{|D|}(\theta_{k,D,\chi}^{M}(f)) = R_{D}(f)|D|^{k+1/2}c_{\chi}^{2k+1}\pi^{-(k+1)}k!L\left(k+1, f \otimes \chi_{D}\chi_{0}^{-1}\right),$$
(29)

Remark 2.5. Let the notation and the assumption be the same as the theorem above.

1. If $R_D(f) \neq 0$, then $\operatorname{ord}_p(R_D(f)) = 1$.

2. If $\chi^2 = 1$, then the Hecke field of f is totally real by [26, Proposition 1.3], and hence

$$R_D(f) = \prod_{\ell} \left(1 + \chi_D \chi(\ell^{\nu_\ell}) w_\ell(f) \right).$$
(30)

- 3. If $\chi^2 = 1$ and M/c_{χ} is square-free, then $R_D(f) \in \{0, 2^{\nu(M/c_{\chi})}\}$ by (27), where $\nu(M/c_{\chi})$ is the number of distinct prime factors of M/c_{χ} . In particular, if $\chi = 1$, then the followings are equivalent:
 - (a) $R_D(f) \neq 0.$ (b) $R_D(f) = 2^{\nu(M)}.$
 - (b) $R_D(f) = 2^{\ell}$. (c) $\chi_D(\ell) = w_\ell(f)$ for all prime divisors ℓ of M.

In this case, the formula (29) is nothing but the result of Kohnen in [14] and the sign of the functional equation of $L(s, f \otimes \chi_D)$ is $(-1)^{k+1}\chi_D(-1)$, i.e., if $(-1)^{k+1}\chi_D(-1) = -1$, then $L(k+1, f \otimes \chi_D) = 0$.

55

50

2.2. Integral binary quadratic forms on which $\Gamma_0(M)$ acts

We need to prepare more notations for sets of quadratic forms in order to state a key lemma below (Lemma 2.8), which plays an important role in the proof of Proposition 2.10. We refer to [9] for a theory of quadratic forms that we need. We fix a positive integer M and a non-zero integer $\Delta \equiv 1, 0 \pmod{4}$ in this subsection. We denoted the set of $\Gamma_0(M)$ -primitive quadratic forms of discriminant Δ by

$$\mathcal{L}_{M}^{0}(\Delta) := \{ [Ma, b, c] \in \mathcal{L}_{M}(\Delta) \mid (a, b, c) = 1 \}.$$

$$(31)$$

We set

$$S_M(\Delta) := \{ \bar{\varrho} \in \mathbb{Z}/2M\mathbb{Z} \mid \varrho^2 \equiv \Delta \pmod{4M} \}.$$
(32)

For $\bar{\varrho} \in S_M(\Delta)$, we set

$$\mathcal{L}^{0}_{M,\varrho}(\Delta) := \{ [Ma, b, c] \in \mathcal{L}^{0}_{M}(\Delta) \mid b \equiv \varrho \pmod{2M} \}.$$
(33)

Note that the $\Gamma_0(M)$ -action \circ defined by (16) preserves $\mathcal{L}^0_{M,\varrho}(\Delta)$ and that we have the following decomposition into the disjoint union of $\Gamma_0(M)$ -invariant sets:

$$\mathcal{L}^{0}_{M}(\Delta) = \bigsqcup_{\bar{\varrho} \in S_{M}(\Delta)} \mathcal{L}^{0}_{M,\varrho}(\Delta).$$
(34)

We then have the following decomposition into the union of $\Gamma_0(M)$ -invariant sets:

$$\mathcal{L}_M(\Delta) = \bigsqcup_{l^2 \mid \Delta} l \cdot \mathcal{L}_M^0(\Delta/l^2) = \bigsqcup_{l^2 \mid \Delta} \bigcup_{\bar{\varrho} \in S_M(\Delta/l^2)} l \cdot \mathcal{L}_{M,\varrho}^0(\Delta/l^2),$$
(35)

where the disjoint union $\bigsqcup_{l^2|\Delta}$ is taken over all positive integers l such that $l^2 \mid \Delta$. For parameters M, Δ, ϱ of $\mathcal{L}^0_{M,\rho}(\Delta)$, we define the greatest common divisor

$$m_{\varrho}^{M} := m := \left(M, \varrho, (\varrho^{2} - \Delta)/4M\right).$$
(36)

Note that the definition (36) depends only on ρ modulo 2*M*. For $[Ma, b, c] \in \mathcal{L}^{0}_{M,\rho}(\Delta)$, we have (M, b, ac) = m and (a, b, c) = 1, so the two numbers

$$(M, b, a) = m_1 \text{ and } (M, b, c) = m_2$$
 (37)

are coprime and $m_1m_2 = m$. We denote by $\mathcal{L}^0_{M,\varrho,m_1,m_2}(\Delta)$ the set of forms $[Ma, b, c] \in \mathcal{L}^0_{M,\varrho}(\Delta)$ satisfying (37). We then have the following decomposition into the disjoint union of $\Gamma_0(M)$ -invariant sets:

$$\mathcal{L}^{0}_{M,\varrho}(\Delta) = \bigsqcup_{m_1,m_2} \mathcal{L}^{0}_{M,\varrho,m_1,m_2}(\Delta),$$
(38)

where \bigsqcup_{m_1,m_2} is taken over all pairs (m_1,m_2) of positive integers m_1,m_2 satisfying $(m_1,m_2) = 1$ and $m = m_1m_2$. Summarizing, we have the following decomposition of $\mathcal{L}_M(\Delta)$ into the union of $\Gamma_0(M)$ -invariant sets:

$$\mathcal{L}_M(\Delta) = \bigsqcup_{l^2 \mid \Delta} \bigcup_{\bar{\varrho} \in S_M(\Delta/l^2)} \bigsqcup_{m_1, m_2} l \cdot \mathcal{L}^0_{M, \varrho, m_1, m_2}(\Delta/l^2),$$
(39)

where \bigsqcup_{m_1,m_2} is taken over all pairs (m_1,m_2) of positive integers m_1,m_2 satisfying $(m_1,m_2) = 1$ and

$$(M, \varrho, (\varrho^2 - \Delta/l^2)/4M) = m_1 m_2.$$
 (40)

We put $\mathcal{L}^0(\Delta) := \mathcal{L}^0_1(\Delta)$.

Proposition 2.6 ([9, Proposition, p.505]). Let M_1 and M_2 be positive integers satisfying $M = M_1M_2$ and $(M_1, M_2) = (m_1, M_2) = (m_2, M_1) = 1$. Then, the mapping $[Ma, b, c] \mapsto [M_1a, b, M_2c]$ induces a bijection

$$\mathcal{L}^{0}_{M,\varrho,m_{1},m_{2}}(\Delta)/\Gamma_{0}(M) \hookrightarrow \mathcal{L}^{0}(\Delta)/\operatorname{SL}_{2}(\mathbb{Z}).$$
(41)

⁶⁰ We prove the following lemma needed in the proof of Proposition 2.10.

Lemma 2.7. Let $\varrho \in S_{Np}(\Delta)$ and $\varrho' \in S_N(\Delta)$ and let m, m' be positive integers with $m \parallel m_{\varrho}^{Np}$ and $m' \parallel m_{\varrho'}^{N}$. The map $[a, b, c] \mapsto [a, b, c]$ induces a bijection

$$\mathcal{L}^{0}_{Np,\varrho,m,1}(\Delta)/\Gamma_{0}(Np) \hookrightarrow \mathcal{L}^{0}_{N,\varrho',m',1}(\Delta)/\Gamma_{0}(N).$$
(42)

Moreover, if (m.p) = 1, then $\tau : [a, b, c] \mapsto [a/p, b, pc]$ induces a bijection between the same spaces as above.

PROOF. Taking (Np, 1) and (N, p) as the ordered pairs (M_1, M_2) in Proposition 2.6 for M := Np, we see that both mappings induce two bijections

$$\mathcal{L}^{0}_{Np,\varrho,m,1}(\Delta)/\Gamma_{0}(Np) \hookrightarrow \mathcal{L}^{0}(\Delta)/\operatorname{SL}_{2}(\mathbb{Z})$$

$$\tag{43}$$

by Proposition 2.6. On the other hand, taking (N,1) as the ordered pair (M_1, M_2) in Proposition 2.6 for M := N, we see that the mapping $[a, b, c] \mapsto [a, b, c]$ induces a bijection

$$\mathcal{L}^{0}(\Delta)/\operatorname{SL}_{2}(\mathbb{Z}) \hookrightarrow \mathcal{L}^{0}_{N,\varrho',m',1}(\Delta)/\Gamma_{0}(N)$$
(44)

by Proposition 2.6. Composing these maps, we obtain the assertion.

65

Assume that Δ is a perfect square and let δ be a positive integer such that $\Delta = \delta^2$. For a positive integer M' with $M' \parallel M$, we define a map $w_{M'} : S_M(\Delta) \to S_M(\Delta)$ by

$$w_{M'}(\varrho) \equiv \begin{cases} \varrho \pmod{2M/M'}, \\ -\varrho \pmod{M'}. \end{cases}$$
(45)

Similarly to Atkin-Lehner involutions $W_{M'}$ on quadratic forms in [9, Section 1], these maps $w_{M'}$ are bijections and satisfy the relation $w_{M'} \circ w_{M''} = w_{M'M''/(M',M'')^2}$, so they form a group of order 2^t , where t is the number of distinct prime factors of M.

Lemma 2.8. Let c be a positive integer with $c \parallel M$ and d an integer with (d, M) = 1. Then we have the decomposition into the disjoint union of $\Gamma_0(M)$ -invariant sets

$$\mathcal{L}_{cM}(c^2 d^2) = \bigsqcup_{l|cd \ M'||c^{-1}M} \bigsqcup_{l \ \mathcal{L}_{M,w_{M'}(cd/l),c/(c,l),1}^0} (c^2 d^2/l^2), \tag{46}$$

where $\bigsqcup_{l|cd}$ and $\bigsqcup_{M' \parallel c^{-1}M}$ is taken over all positive divisors l of cd and all positive integers M' with $M' \parallel c^{-1}M$, respectively.

PROOF. We put $\delta := cd$ and $\Delta := \delta^2$ for short. For a positive divisor l of δ and $\rho \in S_M(\Delta/l^2)$, we denote by $m(l, \rho)$ the greatest common divisor of M, ρ , and $(\rho^2 - \Delta/l^2)/4M$. From

$$\mathcal{L}_{M}(\Delta) = \bigsqcup_{l \mid \delta} \bigcup_{\varrho \in S_{M}(\Delta/l^{2})} \bigsqcup_{m \mid \mid m(l,\varrho)} l \cdot \mathcal{L}^{0}_{M,\varrho,m,m(l,\varrho)/m}(\Delta/l^{2})$$

((39)), we see that

$$\mathcal{L}_{cM}(\Delta) = \bigsqcup_{l|\delta} \bigcup_{\varrho \in S_M(\Delta/l^2)} \mathcal{L}_{cM}(\Delta)_{l,\varrho}, \text{ where } \mathcal{L}_{cM}(\Delta)_{l,\varrho} := \bigsqcup_{\substack{m||m(l,\varrho)\\ lm \equiv 0 \pmod{c}}} l \cdot \mathcal{L}^0_{M,\varrho,m,m(l,\varrho)/m}(\Delta/l^2).$$

Since $lm \equiv 0 \pmod{c}$ implies $m(l, \varrho) \equiv 0 \pmod{c/(c, l)}$ for $m \parallel m(l, \varrho)$, we see that the union runs over $\varrho \in S_M(\Delta/l^2)$ such that $m(l, \varrho) \equiv 0 \pmod{c/(c, l)}$ we have Via the natural bijection from $G := \{M' \in \mathbb{Z}_{>0} \mid M' \parallel M\}$ into the group of $w_{M'}$'s, we may regard G as a group and G acts on the set $S_M(\Delta/l^2)$ for any positive divisor l of δ . For a prime divisor q of M, we put $v_q := \operatorname{ord}_q(M)$, $n := [v_q/2]$, and,

$$R_q := \{ mp^{n'} \mid m \in \mathbb{Z}, 0 \le m \le (q^n - 1)/2 \} \text{ with } n' := \begin{cases} n & \text{if } v_q \text{ is even,} \\ n+1 & \text{if } v_q \text{ is odd.} \end{cases}$$
(47)

Notice that $R_q \cup (-R_q)$ is a complete system of representatives for $\{\bar{x} \in \mathbb{Z}/q^{v_q}\mathbb{Z} \mid x^2 \equiv 0 \pmod{q^{v_q}}\}$. Let S be the set of prime divisors q of M such that $\Delta/l^2 \equiv 0 \pmod{q^{v_q}}$. For $r = (r_q)_q \in \prod_{q \in S} R_q$, we let ϱ_r be an element in $S_M(\Delta/l^2)$ such that for any prime factor q of 2M,

$$\varrho_r \equiv \begin{cases} r_q \pmod{q^{v_q}} & \text{if } q \in S, \\ \delta/l \pmod{q^{v_q}} & \text{if } q \notin S. \end{cases}$$
(48)

We then have the *G*-orbit decomposition $S_M(\Delta/l^2) = \bigsqcup_{(r_q)_q \in \Pi_q \in SR_q} G \cdot \varrho_r$. Note that $m(l, \varrho) = m(l, \varrho_r)$ if $\varrho \in G \cdot \varrho_r$ and that for any $\varrho \in S_M(\Delta/l^2)$, we see that $m(l, \varrho) \equiv 0 \pmod{c/(c, l)}$ if and only if $\varrho \in G \cdot \delta/l$, and in this case $m(l, \varrho) = c/(c, l)$. We thus have

$$\bigcup_{\substack{\varrho \in S_M(\Delta/l^2) \\ m(l,\varrho) \equiv 0 \pmod{c/(c,l)}}} \mathcal{L}_{cM}(\Delta)_{l,\varrho} = \bigcup_{\varrho \in G \cdot \delta/l} \mathcal{L}_{cM}(\Delta)_{l,\varrho} = \bigcup_{\varrho \in G \cdot \delta/l} l \cdot \mathcal{L}^0_{M,\varrho,c/(c,l),1}(\Delta/l^2).$$

Here, for $\varrho_1, \varrho_2 \in G \cdot \delta/l$, we see that the intersection of $l \cdot \mathcal{L}^0_{M,\varrho_1,c/(c,l),1}(\Delta/l^2)$ and $l \cdot \mathcal{L}^0_{M,\varrho_2,c/(c,l),1}(\Delta/l^2)$ is non-empty if and only if $\varrho_1 \equiv \varrho_2 \pmod{2M/c}$. Therefore, we have

$$\bigcup_{\varrho \in G \cdot \delta/l} l \cdot \mathcal{L}^0_{M,\varrho,c/(c,l),1}(\Delta/l^2) = \bigsqcup_{M' \parallel c^{-1}M} l \cdot \mathcal{L}^0_{M,w_{M'}(\delta/l),c/(c,l),1}(\Delta/l^2).$$

2.3. Relationship between $a_{|D|}(\theta_{k,\chi,D}^{Np}(f^*))$ and $a_{|D|}(\theta_{k,\chi,D}^N(f))$

Lemma 2.9. For any $f^* \in S_{2k+2}(Np, \chi^2)$ and any $n \in \mathbb{Z}_{>0}$ with $\chi(-1)(-1)^{k+1}n \equiv 0, 1 \pmod{4}$, we have

$$a_n(\theta_{k,\chi,D}^{Np}(f^*)) = (1 - p^{-1}) c_{k,\chi,D} \sum_{t \mid c_\chi^{-1}N} \mu \chi_D \chi_0^{-1}(t) t^{-k-1} \gamma_{k,\chi,D}^{Np}(f^*; n, t),$$
(49)

where recall that $c_{k,\chi,D}$, $\Delta_{n,t}$, and $\gamma_{k,\chi,D}^{Np}(f;n,t)$ are given by (20), (21), and (22), respectively.

PROOF. We put $a(t) := \mu \chi_D \chi^{-1}(t) t^{-k-1} \gamma_{k,\chi,D}^{Np}(f^*; n, t)$ for short. We see that

t

$$\sum_{|c_{\chi}^{-1}Np} a(t) = \sum_{t \mid c_{\chi}^{-1}N} \left(a(t) + a(pt) \right).$$
(50)

By Theorem 2.2, it suffices to prove $a(pt) = -p^{-1}a(t)$. Let $t \mid c_{\chi}^{-1}N$ and $Q \in \mathcal{L}_{ptc_{\chi}Np}(\Delta_{n,pt})/\Gamma_0(Np)$. Notice that the coefficients of the quadratic form Q are divisible by p. Since $\omega_D(Q) = \chi_D(p)\omega_D(p^{-1}Q)$ and $I_{k,\chi}(f^*, Q) = \chi(p)p^k I_{k,\chi}(f^*, p^{-1}Q)$, we see that

$$\gamma_{k,\chi,D}^{Np}(f^*;n,pt) = \chi_D\chi(p)p^k\gamma_{k,\chi,D}^{Np}(f^*;n,t).$$

We thus have $a(pt) = \mu \chi_D \chi^{-1}(pt)(pt)^{-k-1} \cdot \chi_D \chi(p) p^k \gamma_{k,\chi,D}^{Np}(f^*;n,t) = -p^{-1}a(t).$

For a formal power series $\sum_{n\geq 0} a(n)q^n$, we define

$$\left(\sum_{n\geq 0} a(n)q^n\right)|V_p:=\sum_{n\geq 0} a(n)q^{pn}.$$
(51)

Proposition 2.10. Let $f \in S_{2k+2}^{new}(N, \chi^2)$ be a primitive form with $c_{\chi} \parallel N$ and D a fundamental discriminant with $\chi(-1)(-1)^{k+1}D > 0$ and (D, Np) = 1. We put $f^* := f - \beta \cdot f | V_p \in S_{2k+2}(Np, \chi^2)$ with $\beta \in \mathbb{C}$. Then,

$$a_{|D|}(\theta_{k,\chi,D}^{Np}(f^*)) = 2\left(1 - p^{-1}\right)\left(1 - \chi_D \chi^{-1}(p)p^{-k-1}\beta\right) \cdot a_{|D|}(\theta_{k,\chi,D}^N(f)).$$
(52)

PROOF. By Lemma 2.9 and Theorem 2.2, we have

$$a_{|D|}(\theta_{k,\chi,D}^{Np}(f^*)) = (1 - p^{-1})c_{k,\chi,D} \sum_{t|c_{\chi}^{-1}N} \mu\chi_D\chi^{-1}(t)t^{-k-1}\gamma_{k,\chi,D}^{Np}(f^*;|D|,t),$$
(53)
$$a_{|D|}(\theta_{k,\chi,D}^N(f)) = c_{k,\chi,D} \sum_{t|c_{\chi}^{-1}N} \mu\chi_D\chi^{-1}(t)t^{-k-1}\gamma_{k,\chi,D}^N(f;|D|,t)$$
$$= c_{k,\chi,D} \cdot \gamma_{k,\chi,D}^N(f;|D|,1),$$
(54)

where the last equation is due to (24). We put $I_Q(f) := \omega_D(Q)I_{k,\chi}(f,Q)$ for short. Remember that, from the notation (22), we have

$$\gamma_{k,\chi,D}^{Np}(f^*;|D|,t) = \sum_{Q \in \mathcal{L}_{tc_{\chi}Np}(\Delta_{|D|,t})/\Gamma_0(Np)} I_Q(f^*),$$
(55)

$$\gamma_{k,\chi,D}^{N}(f;|D|,t) = \sum_{Q \in \mathcal{L}_{tc_{\chi}N}(\Delta_{|D|,t})/\Gamma_{0}(N)} I_{Q}(f),$$
(56)

Note that

$$\gamma_{k,\chi,D}^{Np}(f^*;|D|,t) = \gamma_{k,\chi,D}^{Np}(f;|D|,t) - \beta \cdot \gamma_{k,\chi,D}^{Np}(f|V_p;|D|,t).$$
(57)

We put

$$a := \sum_{t \mid c_{\chi}^{-1}N} \mu \chi_D \chi^{-1}(t) t^{-k-1} \gamma_{k,\chi,D}^{Np}(f^*; |D|, t).$$
(58)

Then $a_{|D|}(\theta_{k,\chi,D}^{Np}(f^*)) = (1-p^{-1})c_{k,\chi,D} \cdot a$. Let t be a positive and square-free divisor of N/c_{χ} so that $tc_{\chi} \parallel N$. We put $\delta_t := tc_{\chi}D$ for short so that $\Delta_{|D|,t} = \delta_t^2$. Taking (Np, tc_{χ}, D) as the ordered triple (M, c, d) in Lemma 2.8, we have

$$\mathcal{L}_{tc_{\chi}Np}(\Delta_{|D|,t}) = \bigsqcup_{l|\delta_t} \bigsqcup_{M'\|(tc_{\chi})^{-1}Np} \mathcal{L}(l,M') = \mathcal{L}^{(p)} \sqcup \mathcal{L}_p,$$
(59)

where we put

$$\mathcal{L}(l,M') := l \cdot \mathcal{L}^0_{Np,w_{M'}(\delta_t/l), tc_\chi/(tc_\chi,l), 1}(\Delta_{|D|,t}/l^2)$$
(60)

$$\mathcal{L}^{(p)} := \bigsqcup_{l \mid \delta_t \ M' \mid (tc_{\chi})^{-1}N} \mathcal{L}(l, M') \text{ and } \mathcal{L}_p := \bigsqcup_{l \mid \delta_t \ M' \mid (tc_{\chi})^{-1}N} \mathcal{L}(l, pM').$$
(61)

We thus have

$$\gamma_{k,\chi,D}^{Np}(f;|D|,t) = \sum_{Q \in \mathcal{L}^{(p)}/\Gamma_0(Np)} I_Q(f) + \sum_{Q \in \mathcal{L}_p/\Gamma_0(Np)} I_Q(f),$$
(62)

$$\gamma_{k,\chi,D}^{Np}(f|V_p;|D|,t) = \sum_{Q \in \mathcal{L}^{(p)}/\Gamma_0(Np)} I_Q(f|V_p) + \sum_{Q \in \mathcal{L}_p/\Gamma_0(Np)} I_Q(f|V_p).$$
(63)

Taking (N,tc_{χ},D) as the ordered triple (M,c,d) in Lemma 2.8, we have

$$\mathcal{L}_{tc_{\chi}N}(\Delta_{|D|,t}) = \bigsqcup_{l|\delta_t} \bigsqcup_{M'||(tc_{\chi})^{-1}N} l \cdot \mathcal{L}^0_{N,w_{M'}(\delta_t/l),tc_{\chi}/(tc_{\chi},l),1}(\Delta_{|D|,t}/l^2).$$
(64)

By Lemma 2.7, both mappings $[a, b, c] \mapsto [a, b, c]$ and $\tau : [a, b, c] \mapsto [a/p, b, pc]$ induce two bijections

$$\mathcal{L}^{(p)}/\Gamma_0(Np) \hookrightarrow \mathcal{L}_{tc_{\chi}N}(\Delta_{|D|,t})/\Gamma_0(N) \text{ and } \mathcal{L}_p/\Gamma_0(Np) \hookrightarrow \mathcal{L}_{tc_{\chi}N}(\Delta_{|D|,t})/\Gamma_0(N).$$
(65)

Via two bijections (65) induced by $[a, b, c] \mapsto [a, b, c]$, we have

$$\sum_{Q \in \mathcal{L}^{(p)}/\Gamma_0(Np)} I_Q(f) = \sum_{Q \in \mathcal{L}_p/\Gamma_0(Np)} I_Q(f) = \gamma_{k,\chi,D}^N(f;|D|,t)$$
(66)

and by (62), we have

$$\gamma_{k,\chi,D}^{Np}(f;|D|,t) = 2 \cdot \gamma_{k,\chi,D}^{N}(f;|D|,t).$$
(67)

Via two bijections (65) induced by $\tau : [a, b, c] \mapsto [a/p, b, pc]$, we see that both $\sum_{Q \in \mathcal{L}^{(p)}/\Gamma_0(Np)} I_Q(f|V_p)$ and $\sum_{Q \in \mathcal{L}_p/\Gamma_0(Np)} I_Q(f|V_p)$ coincide with

$$\sum_{Q \in \mathcal{L}_{tc_{\chi}N}(\Delta_t)/\Gamma_0(N)} I_{\tau^{-1}(Q)}(f|V_p).$$
(68)

Here, by [9, Proposition 1 (Multiplicativity) and (Explicit formula)], we have $\omega_D(\tau^{-1}(Q)) = \chi_D(p)\omega_D(Q)$ and by a simple calculation, we have

$$\chi_0(\tau^{-1}(Q)) = \chi^{-1}(p)\chi_0(Q), \tag{69}$$

$$\int_{C_{\tau^{-1}(Q)}} f(pz)\tau^{-1}(Q)(z,1)^k dz = p^{-k-1} \int_{C_Q} f(z)Q(z,1)^k dz.$$
(70)

Indeed, we see that the last equation as follows: Put [a, b, c] := Q. Then

$$\begin{split} \int_{C_{\tau^{-1}(Q)}} f(pz)\tau^{-1}(Q)(z,1)^k dz &= \int_{\omega_{\tau^{-1}(Q)}}^{\omega_{\tau^{-1}(Q)}'} f(pz)(paz^2 + bz + c/p)^k dz \\ &= p^{-k} \int_{p^{-1}\omega_Q}^{p^{-1}\omega_Q'} f(pz)(a(pz)^2 + b(pz) + c)^k dz \\ &= p^{-k} \int_{\omega_Q}^{\omega_Q'} f(z)(az^2 + bz + c)^k p^{-1} dz = p^{-k-1} \int_{C_Q} f(z)Q(z,1)^k dz, \end{split}$$

where at the second equation from the bottom, we have made use of the transformation law with respect to $z \mapsto p^{-1}z$. We thus have $I_{\tau^{-1}(Q)}(f|V_p) = \chi_D \chi^{-1}(p) p^{-k-1} I_Q(f)$, and hence (68) coincides with

$$\chi_D \chi^{-1}(p) p^{-k-1} \gamma_{k,\chi,D}^N(f; |D|, t).$$
(71)

By (63), we have

$$\gamma_{k,\chi,D}^{Np}(f|V_p;|D|,t) = 2 \cdot \chi_D \chi^{-1}(p) p^{-k-1} \gamma_{k,\chi,D}^N(f;|D|,t).$$
(72)

From (57), (67) and (72), we have

$$a = \sum_{t \mid c_{\chi}^{-1}N} \mu \chi_D \chi^{-1}(t) t^{-k-1} 2 \left(1 - \chi_D \chi^{-1}(p) p^{-k-1} \beta \right) \gamma_{k,\chi,D}^N(f; |D|, t)$$

= 2 $\left(1 - \chi_D \chi^{-1}(p) p^{-k-1} \beta \right) \gamma_{k,\chi,D}^N(f; |D|, 1),$ (73)

where the last equation is due to (24).

3. Cohomological interpretation of the *D*-th Shintani lifting

In this section, we will construct the cohomological *D*-th Shintani lifting $\Theta_{k,\chi,D}^{Np}$ satisfying the following commutative diagram:

where all arrows are Hecke equivariant \mathbb{C} -homomorphisms and we concentrate on the minus parts because of $\Theta_{k,\chi,D}^{Np}(\mathrm{Symb}_{\Gamma_0(Np)}(L(2k,\chi^2;\mathbb{C}_p))^+) = 0.$

3.1. Modular symbols and the Eichler-Shimura isomorphism

Let Δ_0 be a subsemigroup of $M_2(\mathbb{Z}) \cap GL_2(\mathbb{Q})$ containing $\Gamma_0(M)$. Let $\operatorname{Div}^0(\mathbb{P}^1(\mathbb{Q}))$ be the group of divisors of degree 0 supported on the rational cusps $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{i\infty\}$ of the complex upper half plane \mathfrak{H} . We let Δ_0 act on \mathfrak{H} by fractional linear transformations, i.e.,

$$\gamma z := \begin{cases} (az+b)(cz+d)^{-1} \text{ if } \det(\gamma) > 0, \\ (a\bar{z}+b)(c\bar{z}+d)^{-1} \text{ if } \det(\gamma) < 0, \end{cases} \left(\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z \in \mathfrak{H} \right).$$
(74)

This induces a natural action of Δ_0 on $\mathfrak{H}^* := \mathfrak{H} \cup \mathbb{P}^1(\mathbb{Q})$ and $\mathbb{P}^1(\mathbb{Q})$. Then Δ_0 acts on $\operatorname{Div}^0(\mathbb{P}^1(\mathbb{Q}))$ by linear fractional transformations. Let R be a commutative ring and E a left $R[\Delta_0]$ -module. We let $\gamma \in \Delta_0$ acts on $\Phi \in \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Div}^0(\mathbb{P}^1(\mathbb{Q})), E)$ by

$$(\Phi|\gamma)(D) := \gamma \Phi(\gamma D). \tag{75}$$

Then the abstract Hecke algebra $R[\Gamma_0(M) \setminus \Delta_0/\Gamma_0(M)]$ with respect to the Hecke pair $(\Gamma_0(M), \Delta_0)$ acts on the group of *E*-valued modular symbols over $\Gamma_0(M)$:

$$\operatorname{Symb}_{\Gamma_0(M)}(E) := \operatorname{Hom}_{\mathbb{Z}}(\operatorname{Div}^0(\mathbb{P}^1(\mathbb{Q})), E)^{\Gamma_0(M)}.$$
(76)

Let \tilde{E} be the locally constant sheaf on the open modular curve $Y := \Gamma_0(M) \setminus \mathfrak{H}$ attached to E. Assume that

the orders of the torsion elements of $\Gamma_0(M)$ act invertibly on E. (77)

Then by [3, Proposition 4.2], there exists a Hecke equivariant canonical isomorphism

$$H^1_c(Y, E) \xrightarrow{\sim} \operatorname{Symb}_{\Gamma_0(M)}(E).$$
 (78)

Throughout the paper, we will identify the group of compactly supported cohomology classes with the group of modular symbols under the assumption that (77). Note that (77) holds if either E is a vector space over a field of characteristic 0, E is a \mathbb{Z}_p -module with $p \geq 5$, or $\Gamma_0(M)$ is torsion-free. Fix a point $x_0 \in \mathbb{P}^1(\mathbb{Q})$. The natural map $\operatorname{Symb}_{\Gamma_0(M)}(E) \to H^1(\Gamma_0(M), E)$ sends a modular symbol Φ to the cohomology class represented by the 1-cocycle $\gamma \mapsto \Phi(\{\gamma x_0\} - \{x_0\})$. This map yields a Hecke equivariant epimorphism

$$\operatorname{Symb}_{\Gamma_0(M)}(E) \twoheadrightarrow H^1_p(\Gamma_0(M), E).$$
(79)

The matrix $\iota := \operatorname{diag}(1, -1)$ induces natural involutions on one of the above cohomology groups H, and each of cohomology groups H is decomposed into \pm -eigenmodules $H = H^+ \oplus H^-$ if 2 acts invertibly on the coefficient module of H. Indeed, each cohomology class Φ decomposes as $\Phi = \Phi^+ + \Phi^-$, where $\Phi^{\pm} := 2^{-1}(\Phi \pm \Phi|\iota)$. For a non-negative integer n, let L(n, R) be the R-module of homogeneous polynomials in (X, Y) of degree n with coefficients in R. Let ε be an R-valued Dirichlet character modulo M. We denote by $L(n, \varepsilon; R)$ the $R[\Gamma_0(M)]$ -module L(n, R) endowed with the ε -twisted action, i.e., for $\gamma \in \Gamma_0(M)$ and $P(X, Y) \in L(n, \varepsilon; R)$,

$$(\gamma P)(X,Y) = \varepsilon(\gamma)P((X,Y)^t\gamma), \tag{80}$$

where $\varepsilon(\gamma)$ is the value of ε at the lower right entry of γ . Suppose that n! is invertible in R. We define a pairing $[,]: L(n, R) \times L(n, R) \to R$ by

$$\left[\sum_{i=0}^{n} a_j X^{n-i} Y^j, \sum_{i=0}^{n} b_i X^{n-i} Y^i\right] := \sum_{i=0}^{n} (-1)^i \binom{n}{i}^{-1} a_i b_{n-i}.$$
(81)

We use the following two properties later:

$$[(aX - bY)^n, P(X, Y)] = (-1)^n P(b, a)$$
(82)

$$[\gamma P, \gamma Q] = \det \gamma^n [P, Q] \tag{83}$$

for $a, b \in R$, $P, Q \in L(n, R)$ and $\gamma \in M_2(R)$. If K is a field of characteristic zero, then by the Manin-Drinfeld principle there exists a unique Hecke equivariant section

$$s_{k,\varepsilon} : H^1_p(\Gamma_0(M), L(k,\varepsilon;K)) \hookrightarrow \operatorname{Symb}_{\Gamma_0(M)}(L(k,\varepsilon;K))$$
(84)

of the surjection (79). For each cusp form $f \in S_{k+2}(M, \varepsilon)$, we define the $L(k, \varepsilon; \mathbb{C})$ -valued differential form on \mathfrak{H} :

$$\omega_f := f(z)(X - zY)^k dz. \tag{85}$$

Fix a point $z_0 \in \mathfrak{H}^*$. We may attach a cohomology class $\mathrm{ES}_k(f) \in H^1_p(\Gamma_0(M), L(k, \varepsilon; \mathbb{C}))$ defined by

$$\mathrm{ES}_k(f)(\gamma) := \int_{z_0}^{\gamma z_0} \omega_f \tag{86}$$

for each $\gamma \in \Gamma_0(M)$. The integral is independent of the choice of the point z_0 . For either choice of sign \pm , we have a Hecke equivariant isomorphism

$$\mathrm{ES}_k^{\pm} : S_{k+2}(M,\varepsilon) \xrightarrow{\sim} H_p^1(\Gamma_0(M), L(k,\varepsilon;\mathbb{C}))^{\pm}; f \mapsto \mathrm{ES}_k^{\pm}(f) := \mathrm{ES}_k(f)^{\pm}$$
(87)

The additive map

$$\Phi_f : \operatorname{Div}^0(\mathbb{P}^1(\mathbb{Q})) \to L(k,\varepsilon;\mathbb{C}) \; ; \; \{c_2\} - \{c_1\} \mapsto \int_{c_1}^{c_2} \omega_f \tag{88}$$

defines a modular symbol in $\operatorname{Symb}_{\Gamma_0(M)}(L(k,\varepsilon;\mathbb{C}))$. Then $\operatorname{ES}_k^{\pm}(f)$ is the image of Φ_f under (79). Moreover, the map

$$S_{k+2}(M,\varepsilon) \to \operatorname{Symb}_{\Gamma_0(M)}(L(k,\varepsilon;\mathbb{C})) ; f \mapsto \Phi_f$$
(89)

is Hecke equivariant. Hence, by the Hecke equivariance of the Eichler-Shimura isomorphism (87), we see that for either choice of sign \pm ,

$$s_{k,\varepsilon}\left(\mathrm{ES}_k^{\pm}(f)\right) = \Phi_f^{\pm}.$$
(90)

3.2. The cohomological D-th Shintani lifting

Let k be a non-negative integer, M an odd positive integer, χ a Dirichlet character modulo M, and D a fundamental discriminant with $\chi(-1)(-1)^{k+1}D > 0$. For each $Q \in \mathcal{L}_M(\Delta)$ with a positive integer Δ with $\Delta \equiv 0, 1 \pmod{4}$, let $\partial C_Q \in \text{Div}^0(\mathbb{P}^1(\mathbb{Q}))$ be the boundary of C_Q given by

$$\partial C_Q := \{\omega'_Q\} - \{\omega_Q\},\tag{91}$$

where recall that (ω_Q, ω'_Q) is defined by (17) and that C_Q is the geodesic path oriented from ω_Q to ω'_Q . Let R be a commutative $\mathbb{Z}[\chi][\chi(-1)^{1/2}|D|^{1/2}G(\chi_0^{-1})]$ -algebra such that (2k)! is invertible in R.

Definition 3.1. 1. For each $\Phi \in \text{Symb}_{\Gamma_0(M)}(L(2k,\chi^2;R))$ and each $Q \in \mathcal{L}_M(\Delta)$, we set

$$J_{k,\chi}(\Phi,Q) := \chi_0(Q) \cdot \left[\Phi(\partial C_Q), Q^k\right] \in R,$$
(92)

$$\gamma_{k,\chi,D}^{M}(\Phi;n,t) := \sum_{Q \in \mathcal{L}_{tc_{\chi}M}(\Delta_{n,t})/\Gamma_{0}(M)} \omega_{D}(Q) J_{k,\chi}(\Phi,Q)$$
(93)

2. For $\Phi \in \text{Symb}_{\Gamma_0(M)}(L(2k,\chi^2;R))$, we define the *n*-th coefficient of $\Theta_{k,\chi,D}^M(\Phi) \in R[[q]]$ by

$$a_n(\Theta_{k,\chi,D}^M(\Phi)) := c_{k,\chi,D} \sum_{t \mid c_\chi^{-1}M} \mu \chi_D \chi_0^{-1}(t) t^{-k-1} \gamma_{k,\chi,D}^M(\Phi; n, t)$$
(94)

80

if $\chi(-1)(-1)^{k+1}n \equiv 0, 1 \pmod{4}$ and $a_n(\Theta_{k,\chi,D}^M(\Phi)) := 0$ otherwise. Here, recall that $c_{k,\chi,D}$ and $\Delta_{n,t}$ is defined by (20) and (21), respectively.

Proposition 3.2. 1. For any $\Phi \in \text{Symb}_{\Gamma_0(M)}(L(2k, \chi^2; R))$, we have

$$\Theta^M_{k,\chi,D}(\Phi|\iota) = -\Theta^M_{k,\chi,D}(\Phi).$$
(95)

2. For any $f \in S_{2k+2}(M, \chi^2)$, we have

$$\Theta_{k,\chi,D}^{M}(\Phi_f) = \Theta_{k,\chi,D}^{M}(\Phi_f^{-}) = \theta_{k,\chi,D}^{M}(f).$$
(96)

3. If K is a field of characteristic zero and Φ belongs to the image of s_{2k,χ^2} , then

$$\Theta^{M}_{k,\chi,D}(\Phi) \in S^{+}_{k+3/2}(4M,\tilde{\chi};K).$$
(97)

PROOF. The proof is essentially the same as [29, Proposition 4.3.3].

Let $f \in S_{2k+2}(M, \chi^2)$ be a Hecke eigenform, K the p-adic completion of the field obtained by adjoining the values of χ and $\chi(-1)^{1/2}|D|^{1/2}G(\chi_0^{-1})$ to the Hecke field \mathbb{Q}_f , and λ_f the \mathcal{O}_K -algebra homomorphism corresponding to f. By [13, Proposition 3.3], the eigenmodule $\operatorname{Symb}_{\Gamma_0(M)}(L(k, \chi^2; \mathcal{O}_K))^{\pm}[\lambda_f]$ is free of rank one over \mathcal{O}_K . Let Δ_f^{\pm} be a generator of $\operatorname{Symb}_{\Gamma_0(M)}(L(k, \chi^2; \mathcal{O}_K))^{\pm}[\lambda_f]$. This fact implies that there exists $\Omega(f)^{\pm} \in \mathbb{C}_p^{\times}$ such that

$$\Delta_f^{\pm} = (\Omega(f)^{\pm})^{-1} \cdot \Phi_f^{\pm} \in \operatorname{Symb}_{\Gamma_0(M)}(L(k,\chi^2;\mathcal{O}_K))^{\pm}[\lambda_f].$$
(98)

Theorem 3.3. Let $f \in S_{2k+2}(Np, \chi^2)$ be a Hecke eigenform with $\chi_D \chi(-1)(-1)^k = -1$. Then,

$$(\Omega(f)^{-})^{-1} \cdot \theta_{k,\chi,D}^{Np}(f) = \Theta_{k,\chi,D}(\Delta_f^{-}) \in S_{k+3/2}^+(4Np,\tilde{\chi};p^{-1}\mathcal{O}_K).$$
(99)

PROOF. Since $\Delta_f^- \in \text{Symb}_{\Gamma_0(Np)}(L(k,\varepsilon;\mathcal{O}_K))^-[\lambda_f]$, we have

$$\chi_0(Q) \cdot \left[\Delta_f^-(\partial C_Q), Q^k\right] \in \mathcal{O}_K.$$
(100)

The assertion follows from Proposition 3.2.

For a Hecke eigenform $f \in S_{2k+2}(Np,\chi^2)$ with $\chi_D\chi(-1)(-1)^k = -1$. We fix, once and for all, the complex period $\Omega(f)^-$ as (98) and define

$$\theta_D^{\mathrm{alg}}(f) := (\Omega(f)^{-})^{-1} p \cdot \theta_{k,\chi,D}^{Np}(f) \in \mathcal{O}_K[[q]].$$
(101)

4. Rigid analytic ingredients

Let K be a complete discrete valuation field. The weight space \mathcal{W} attached to $\mathcal{O}_K[\![\mathbb{Z}_p^{\times}]\!]$ is the rigid analytic variety whose \mathbb{C}_p -valued points are given by

$$\operatorname{Hom}^{\operatorname{cont}}(\mathbb{Z}_p^{\times}, \mathbb{C}_p^{\times}) \cong \operatorname{Hom}_{\mathcal{O}_K\text{-}\operatorname{alg}}^{\operatorname{cont}}(\mathcal{O}_K[\![\mathbb{Z}_p^{\times}]\!], \mathbb{C}_p).$$
(102)

For a K-Banach algebra R and an R-valued point $k \in \mathcal{W}(R)$, we will use a notation t^k instead of k(t) for $t \in \mathbb{Z}_p^{\times}$. For a K-rigid analytic variety X, we denote by A(X) the ring of rigid analytic functions on X and $A^{\circ}(X)$ the subring consisting of elements that are power bounded with respect to the supremum semi-norm | | (see [4, Definition 6.2.1/2]). By [4, Proposition 6.2.3/1], we have $A^{\circ}(X) = \{f \in A(X) \mid |f| \leq 1\}$.

90 4.1. Coleman families

In this subsection, we recall Coleman families given in [7] following [33]. Let K be a complete subfield of \mathbb{C}_p and $f \in S_{k_0}(Np,\varepsilon;K)_{\alpha}$ a Hecke eigenform with $k_0 - 1 > \alpha$. Assume that f is (p)-new, i.e., the primitive form attached to f is a newform of level either N or Np. We denote by ε_p the restriction of ε to $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Then there exists an integer $0 \le i \le p-1$ such that we have $\varepsilon_p = \tau^{i-k_0}$, where $\tau : (\mathbb{Z}/p\mathbb{Z})^{\times} \hookrightarrow \mathbb{Z}_p^{\times}$ is the Teichmüller character. Let T(n) be a Hecke operator on overconvergent forms defined in [7, Lemma B5.1 and p.464] for each positive integer n. Note that T(n) coincides with the usual Hecke operator T_n on classical modular forms Let S(N,i) be the K-vector space of families of cuspidal overconvergent forms of tame level N and type i defined in [7, Section B4]. Then by [7, Theorem B3.4], there exists a sufficiently large integer m > (2-p)/(p-1)depending on α such that we can obtain a certain direct summand $S_B(N,i)_{\alpha}$ of the restriction of S(N,i) on the affinoid disc $B = B_K[k_0, p^{-m}]$ of radius p^{-m} around k_0 defined over K, which interpolates the K-vector spaces $S_k^{cl}(\omega^{i-k}; K)_{\alpha}$ of classical cusp forms of level Np, $(\mathbb{Z}/p\mathbb{Z})^{\times}$ -character τ^{i-k} and T(p)-slope α with varying integral weights $k \in B(\mathbb{Z}) := B(\mathbb{C}_p) \cap \mathbb{Z} = \{k \in \mathbb{Z} \mid k \equiv k_0 \pmod{p^m}\}$ greater than $\alpha + 1$. Here the classicality of overconvergent forms of small T(p)-slope is given by [6, Theorem 6.1]. (Note that p^{-m} and $S_B(N, i)_{\alpha}$ are written as r and H in [7, the subsection "*R*-families" on the page 465], respectively.) The set of \mathbb{C}_p -valued points of B is given by

$$B(\mathbb{C}_p) = \{ s \in \mathcal{O}_{\mathbb{C}_p} \mid |k_0 - s|_p \le p^{-m} \}.$$
 (103)

The K-affinoid algebra A(B) attached to B is the K-algebra $K \langle (X - k_0)/p^m \rangle$ of strictly convergent power series in $(X - k_0)/p^m$ with the indeterminate X (see [4, Proposition 6.1.4/4]). By [7, Theorem B3.4], we know that

$$\dim_{K}(S_{k_{0}}^{\text{cl}}(\tau^{i-k_{0}};K)_{\alpha}) = \dim_{K}(S_{k}^{\text{cl}}(\tau^{i-k};K)_{\alpha}) =: d$$
(104)

for all k in

$$W_B := \{k \in B(\mathbb{Z}) \mid k \equiv k_0 \pmod{p-1}, k > \alpha + 1\}.$$
(105)

Then we see that $S_B(N, i)_{\alpha}$ is a projective A(B)-module of rank d by [7, Theorem A4.5], and for any $k \in W_B$, we have the specialization map

$$\operatorname{sp}_k : S_B(N,i)_{\alpha} \twoheadrightarrow S_B(N,i)_{\alpha} \otimes_{A(B)} A(B) / P_k \xrightarrow{\sim} S_k^{\operatorname{cl}}(\tau^{i-k};K)_{\alpha},$$
(106)

where $P_k := (X - k)$ is the maximal ideal of A(B). For any $k \in W_B$, we have $\tau^{i-k} = \tau^{i-k_0} = \varepsilon_p$. The (p)-new subspace $S_B^{(p)-\text{new}}(N,i)_{\alpha}$ of $S_B(N,i)_{\alpha}$ is defined as the intersection of kernels of all the degeneracy trace maps from level $\Gamma_1(Np)$ to level $\Gamma_1(N'p)$ for all positive divisors N' of N with $N' \neq N$. For any $k \in W_B$, we define the (p)-new subspace $S_k^{(p)-\text{new}}(\tau^{i-k};K)_{\alpha}$ of $S_k^{cl}(\tau^{i-k};K)_{\alpha}$ as well. Then, we have the canonical isomorphism

$$S_B^{(p)-\text{new}}(N,i)_{\alpha} \otimes_{A(B)} A(B)/P_k \cong S_k^{(p)-\text{new}}(\tau^{i-k};K)_{\alpha}$$
(107)

of finite dimensional K-vector spaces (see [33, Proposition 2.1]).

Definition 4.1. We define the subspace $S_k^{ss}(K)$ of $S_k^{(p)-new}(\mathbb{1}_p;K)_{\alpha}$ as the subspaces spanned by primitive forms of level Np and character ε and old forms g and $g|V_p$ coming from primitive forms g of level N and character ε such that the characteristic polynomial of T(p) acting on the subspaces spanned by g and $g|V_p$ has no double roots (see [33, Definition 2.2]).

95

Assume that $i \equiv k_0 \pmod{p-1}$. By (107), we have the specialization map

$$\operatorname{sp}_{k}: S_{B}^{(p)\operatorname{-new}}(N, i)_{\alpha} \twoheadrightarrow S_{B}^{(p)\operatorname{-new}}(N, i)_{\alpha} \otimes_{A(B)} A(B)/P_{k} \xrightarrow{\sim} S_{k}^{(p)\operatorname{-new}}(\mathbb{1}_{p}; K)_{\alpha}$$
(108)

for any $k \in W_B$. Then we put

$$S_B^{\rm ss} := {\rm sp}_{k_0}^{-1}(S_{k_0}^{\rm ss}(K)) \subset S_B^{(p)-{\rm new}}(N,i)_{\alpha}.$$
(109)

Definition 4.2. Let \mathcal{H}_B be the Hecke algebra defined as the A(B)-subalgebra of $\operatorname{End}_{A(B)}(S_B(N,i)_{\alpha})$ generated by Hecke operators T(n) with all $n \geq 1$. We denote by $\mathcal{H}_B^{(p)-\operatorname{new}}$ the image of the natural homomorphism

$$\mathcal{H}_B \to \operatorname{End}_{A(B)}(S_B^{(p)-\operatorname{new}}(N,i)_{\alpha})$$
(110)

given by the restricting the Hecke action. Since the A(B)-submodule S_B^{ss} defined by (109) is stable under the action of $\mathcal{H}_B^{(p)-\text{new}}$, we can take the image \mathfrak{h}_B of the natural homomorphism

$$\mathcal{H}_B^{(p)\text{-new}} \to \operatorname{End}_{A(B)}(S_B^{ss}) \tag{111}$$

given by restricting the Hecke action.

Then \mathfrak{h}_B is a K-affinoid algebra which is finite over A(B). We specialize \mathfrak{h}_B at the closed point k_0 of B as $\mathfrak{h}_B \otimes_{A(B)} A(B)/P_{k_0}$ and take the image $\mathfrak{h}_{k_0}(K)$ of the natural homomorphism

$$\mathfrak{h}_B \otimes_{A(B)} A(B)/P_{k_0} \to \operatorname{End}_K(\operatorname{sp}_{k_0}(S_B^{\operatorname{ss}})) = \operatorname{End}_K(S_{k_0}^{\operatorname{ss}}(K)).$$
(112)

Then the Hecke algebra $\mathfrak{h}_{k_0}(K)$ is a commutative semi-simple K-algebra by the theory of newforms and old forms (see [19, Theorem 1]). By the definition of \mathfrak{h}_B and $\mathfrak{h}_{k_0}(K)$, we have the natural surjective A(B)-algebra homomorphism

$$\mathfrak{sp}_{k_0} : \mathfrak{h}_B \twoheadrightarrow \mathfrak{h}_{k_0}(K). \tag{113}$$

Let $\lambda_1, \ldots, \lambda_r : \mathfrak{h}_{k_0}(K) \to K$ be the K-algebra homomorphisms which correspond to all Hekce eigenforms in $S_{k_0}^{ss}(K)$ via the duality between classical Hecke eigenforms and K-algebra homomorphisms from a classical Hecke algebra into K (see [11, Proposition 3.21]) with some positive integer $r \leq d$. Let $\mathfrak{h}_B^{red} := \mathfrak{h}_B/\sqrt{(0)}$ be the reduction of \mathfrak{h}_B . Since $\mathfrak{h}_{k_0}(K)$ is reduced, we see that (113) factors through the surjective A(B)-algebra homomorphism $\mathfrak{sp}_{k_0} : \mathfrak{h}_B^{red} \twoheadrightarrow \mathfrak{h}_{k_0}(K)$.

Theorem 4.3 ([33, Theorem 2.2]). We have the following commutative diagram of A(B)-algebras

after shrinking the disk B around the center k_0 if necessary.

Let $f \in S_{k_0}^{\text{new}}(N,\varepsilon)_{\alpha}$ be a primitive form with $k_0 - 1 > \alpha$. Assume that $\alpha \neq (k_0 - 1)/2$. Then the characteristic polynomial of T(p) acting on the subspace spanned by f and $f|V_p$ has no double roots. We can take the root $\alpha_p(f)$ of the polynomial satisfying $\operatorname{ord}_p(\alpha_p(f)) = \alpha$. The *p*-stabilization f^* of f is the eigenvector with eigenvalue $\alpha_p(f)$ of T_p on the subspace given by

$$f^* := f - \varepsilon(p) p^{k_0 - 1} \alpha_p(f)^{-1} \cdot f | V_p.$$
(115)

The *p*-stabilization f^* is the Hecke eigenform of level Np with the same eigenvalues as f outside p and T(p)eigenvalue $a_p(f^*) = \alpha_p(f)$. Let K be the *p*-adic completion of the field $\mathbb{Q}_f(\alpha_p(f))$ obtained by adjoining $\alpha_p(f)$ to the Hecke field \mathbb{Q}_f of f. Then $f^* \in S_{k_0}^{ss}(K)$. Let $\lambda_{f^*} : \mathfrak{h}_{k_0}(K) \to K$ be the K-algebra homomorphism corresponding to f^* via the duality and $A_{f^*} : \mathfrak{h}_B^{red} \to A(B)$ the A(B)-algebra homomorphism whose specialization at k_0 coincides with $\lambda_{f^*}(\mathfrak{sp}_{k_0}(T))$ for any $T \in \mathfrak{h}_B^{red}$, obtained in the theorem above. For all positive integers n, we put $a_n(\mathbf{f}) := A_{f^*}(T(n))$ for short. Then the formal power series $\mathbf{f} = \sum_{n\geq 1} a_n(\mathbf{f})q^n \in A(B)[[q]]$ interpolates Hecke eigenforms of level Np and we have the following:

Theorem 4.4 ([33, Corollary 2.3]). Let $f \in S_{k_0}^{new}(N, \varepsilon)_{\alpha}$ be a primitive form with $k_0 - 1 > \alpha \neq (k_0 - 1)/2$, and K a complete subfield of \mathbb{C}_p containing the p-adic completion of the Hecke field \mathbb{Q}_{f^*} . Then there exist a K-affinoid disk $B_f = B_K[k_0, p^{-m_f}]$ with a positive integer m_f and a formal power series $\mathbf{f} \in A^{\circ}(B_f)[[q]]$ such that for any $k \in W_f := B_f(\mathbb{Z}) \cap W_B$ except for at most one (we call this element an exceptional weight), there exists a primitive form $f_k \in S_k^{new}(N, \varepsilon; \mathcal{O}_K)_{\alpha}$ satisfying the following conditions:

f(k) = f_k^{*}.
 f(k₀) = f^{*} (i.e., f_{k₀} = f).
 f(k₁) ∈ S^{new}_{k₁}(Np,ε)_α is primitive if there exists an exceptional weight k₁ ∈ W_f

In particular, then there exists an integer $m_0 \geq m_f$ such that for any integer $r > m_0$, we have

$$f_k^* \equiv f^* \pmod{p^{r-m_0}\mathcal{O}_K} \ if \ k \equiv k_0 \ (\text{mod} \ (p-1)p^r).$$
(116)

Remark 4.5. In order to obtain a disk B_f in the theorem above, we shrink the disk B if necessary so that the following properties hold:

- 1. Theorem 4.3 is applicable.
- 2. the coefficients $a_n(\mathbf{f})$ of \mathbf{f} satisfy $|a_n(\mathbf{f})| \leq 1$, i.e., $\mathbf{f} \in A^{\circ}(B_f)$.
- 3. the specializations $\mathbf{f}(k)$ have the same character ε .

It is possible to shrink B so that we have (2) by [7, the proof of Lemma B5.3] and (3) by [5, Lemma 5.5]. Thus. ¹²⁵ we may take a disk B' as the intersection of disks satisfying (1), (2), and (3).

We refer to **f** as a Coleman family passing through f^* as well as $\{f_k^*\}_{k \in W_f}$ obtained in the theorem above for a primitive form f.

4.2. Analytic functions and distributions

Let \mathcal{W}^* be the rigid subspace of \mathcal{W} consisting of accessible weights, i.e., weights k such that for any $t \in \mathbb{Z}_p^{\times}$, $|k(t)^{p-1} - 1| < p^{-1/(p-1)}$. Let U be an open K-affinoid subvariety of \mathcal{W}^* . We define the universal weight $k_U \in \operatorname{Hom}^{\operatorname{cont}}(\mathbb{Z}_p^{\times}, A^{\circ}(U)^{\times})$ by $t^{k_U}(x) := t^x$ for all $x \in U(K)$. Let R° denote one of the complete regular local Noetherian rings O_K and $A^{\circ}(U)$. For $R := R^{\circ} \otimes_{\mathcal{O}_K} K$, we let $k_R \in \mathcal{W}^*(R)$ be an element that requires $k_R = k_U$ if R = A(U). We denote by $A(k_R; R^{\circ})$ the R° -module consisting of functions $f : \mathbb{Z}_p \times \mathbb{Z}_p^{\times} \to R^{\circ}$ such that for all $t \in \mathbb{Z}_p^{\times}$ and $(x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p^{\times}$, we have $f(tx, ty) = t^{k_R} f(x, y)$ and $f(z, 1) \in R^{\circ}\langle z \rangle$. We denote by $A(k_R; R^{\circ})$ the $R^{\circ}[\Gamma_0(Np)]$ -module $A(k_R; R^{\circ})$ equipped with the ε -twisted action; we let $\gamma \in \Gamma_0(Np)$ act on $f \in A(k_R; R^{\circ})$ by

$$(\gamma \cdot f)(x,y) = \varepsilon(\gamma)f((x,y)^t\gamma), \tag{117}$$

where $\varepsilon(\gamma)$ is the value of ε on the lower right entry of γ and we assume that the restriction of k_U and ε to $(\mathbb{Z}/p\mathbb{Z})^{\times}$ coincide. We set

$$D(k_R,\varepsilon;R^\circ) := \operatorname{Hom}_{R^\circ}^{\operatorname{cont}}(A(k_R,\varepsilon;R^\circ),R^\circ).$$
(118)

and endow $D(k_R, \varepsilon; R^\circ)$ with $\Gamma_0(Np)$ -action by

$$(\mu|\gamma)(f) := \mu(\gamma \cdot f) \tag{119}$$

for $f \in A(k_R, \varepsilon; R^\circ)$. Now we have natural specialization maps

$$A(k_U,\varepsilon;A^{\circ}(U)) \to A(k,\varepsilon;\mathcal{O}_K); f \mapsto f_k,$$
(120)

$$\eta_k : D(k_U, \varepsilon; A^{\circ}(U)) \to D(k, \varepsilon; \mathcal{O}_K); \mu \mapsto \mu_k, \tag{121}$$

where $f_k(x,y) := f(x,y)(k)$ and $\mu_k(f) := \mu(f_U)(k)$ with $f_U(x,y) := y^{k_U} f(x/y,1)$ for $f \in A(k,\varepsilon;\mathcal{O}_K)$. Let t_k be an element of $A^{\circ}(U)$ which vanishes with order 1 at k and nowhere else. Then we have canonical exact sequences of $A^{\circ}(U)[\Gamma_0(Np)]$ -modules

$$0 \to A(k_U, \varepsilon; A^{\circ}(U)) \xrightarrow{t_k} A(k_U, \varepsilon; A^{\circ}(U)) \to A(k, \varepsilon; \mathcal{O}_K) \to 0,$$
(122)

$$0 \to D(k_U, \varepsilon; A^{\circ}(U)) \xrightarrow{\iota_k} D(k_U, \varepsilon; A^{\circ}(U)) \xrightarrow{\eta_k} D(k, \varepsilon; \mathcal{O}_K) \to 0$$
(123)

(see [1, Proposition 3.11]). Identifying $L(k,\varepsilon;\mathcal{O}_K) = \langle X^k, X^{k-1}Y, \ldots, Y^k \rangle$ with the $\mathcal{O}_K[\Gamma_0(Np)]$ -submodule $\mathcal{P}(k,\varepsilon;\mathcal{O}_K) := \langle y^k, y^{k-1}x, \ldots, x^k \rangle$ of $A(k,\varepsilon;\mathcal{O}_K)$, and dualizing $\mathcal{P}(k,\varepsilon;\mathcal{O}_K) \subset A(k,\varepsilon;\mathcal{O}_K)$ give a $K[\Gamma_0(Np)]$ -homomorphism

$$\rho_k: D(k,\varepsilon;\mathcal{O}_K) \twoheadrightarrow L(k,\varepsilon;\mathcal{O}_K); \mu \mapsto \sum_{i=0}^k \mu(y^{k-i}x^i)X^{k-i}Y^i = \int_{\mathbb{Z}_p \times \mathbb{Z}_p^\times} (yX - xY)^k d\mu(x,y).$$
(124)

We define the $A^{\circ}(U)[\Gamma_0(Np)]$ -homomorphism ϕ_k° as

$$\phi_k^{\circ} : D(k_U, \varepsilon; A^{\circ}(\Omega)) \xrightarrow{\eta_k} D(k, \varepsilon; \mathcal{O}_K) \xrightarrow{\rho_k} L(k, \varepsilon; \mathcal{O}_K).$$
(125)

We set $A(k_R, \varepsilon; R) := A(k_R, \varepsilon; R^\circ) \hat{\otimes}_{\mathcal{O}_K} K$ and $D(k_R, \varepsilon; R) := D(k_R, \varepsilon; R^\circ) \hat{\otimes}_{\mathcal{O}_K} K$. Finally, we define the $A(U)[\Gamma_0(Np)]$ -homomorphism ϕ_k by

$$\phi_k := \phi_k^{\circ} \hat{\otimes}_{\mathcal{O}_K} K : D(k_U, \varepsilon; A(U)) \twoheadrightarrow L(k, \varepsilon; K),$$
(126)

4.3. Slope $\leq h$ decompositon

Definition 4.6 ([2, Definition 4.1.1, 4.6.3 and 4.6.1 and Lemma 4.6.4]). Let $K \subset \mathbb{C}_p$ be a complete subfield, A a commutative Noetherian K-Banach algebra with norm $|\cdot|_A$, A^{m} the group of multiplicative units in A with respect to $|\cdot|_A$, and H an A-module with $u \in \operatorname{End}_A(H)$. For a polynomial $Q \in A[T]$, we denote by

$$Q^*(T) := T^{\deg(Q)}Q(1/T).$$
(127)

- Let $h \in \mathbb{Q}$ and $A[T]_{\leq h}$ the set of polynomials $Q \in A[T]$ such that $Q^*(0) \in A^m$ and the slopes of Q are less than or equal to h (see [2] for the definition of slopes of a power series). A slope $\leq h$ decomposition of H with respect to u is an A[u]-module decomposition $H = H_{\leq h} \oplus H_{>h}$ such that
 - 1. $H_{\leq h} = \bigcup_{Q \in A[T]_{\leq h}} \operatorname{Ker} Q^*(u)$ is finitely generated as an A-module
 - 2. $Q^*(u)|_{H_{>h}} \in \operatorname{Aut}_A(H_{>h})$ for any $Q \in A[T]_{\leq h}$.

135 Theorem 4.7. Let $h \in \mathbb{Q}_{\geq 0}$.

- 1. For any $\kappa \in \mathcal{W}(K)$, there exists an open K-affinoid subvariety U in \mathcal{W} containing κ such that an A(U)module $\operatorname{Symb}_{\Gamma_0(Np)}(D(k_U, \varepsilon; A(U)))^{\pm}$ admits a slope $\leq h$ decomposition with respect to the Hecke operator T_p .
- 2. The following control theorem holds:

$$\operatorname{Symb}_{\Gamma_0(Np)}(D(k_U,\varepsilon;A(U)))_{\leq h}^{\pm} \otimes_{A(U)} A(U)/P_k \cong \operatorname{Symb}_{\Gamma_0(Np)}(D(k,\varepsilon;K))_{\leq h}^{\pm},$$
(128)

where P_k is the maximal ideal of A(U) generated by t_k .

3. If k + 1 > h, the epimorphism ρ_k (124) induces the $K[\Gamma_0(Np)]$ -isomorphism

$$\operatorname{Symb}_{\Gamma_0(Np)}(D(k,\varepsilon;K))_{\leq h}^{\pm} \xrightarrow{\sim} \operatorname{Symb}_{\Gamma_0(Np)}(L(k,\varepsilon;K))_{\leq h}^{\pm}.$$
(129)

¹⁴⁰ **Remark 4.8.** The theorem above was quoted in [23] without proof (see [23, Theorem 4.6] for (1) and [23, Theorem 4.12] for (2) and (3)). For more details, we refer to [2] and [1, Section 3]. In addition, [24] is useful especially for the comparison theorem (3).

5. p-Adic interpolation of the D-th Shintani lifting

Let $f \in S_{k_0+2}^{\text{new}}(N,\varepsilon)_{\alpha}$ be a primitive form with $k_0 + 1 > \alpha \neq (k_0 + 1)/2$, and K the p-adic completion of the field obtained by adjoining $\chi(-1)^{1/2}|D|^{1/2}G(\chi_0^{-1})$ and the values of χ to the Hecke field \mathbb{Q}_{f^*} . By Theorem 4.4, there exists a K-affinoid disk B_f around $k_0 + 2$ and a Coleman family $\mathbf{f} \in A^{\circ}(B_f)[[q]]$ passing through f^* . By Theorem 4.7.(1), there exists an open K-affinoid subvariety U in \mathcal{W}^* containing $(k_0 + 2, \mathbb{1}_p)$ such that an A(U)-module Symb_{$\Gamma_0(Np)$} $(D(k_U, \varepsilon; A(U)))^{\pm}$ admits a slope $\leq \alpha$ decomposition with respect to the Hecke operator T_p .

150 5.1. Overconvergent Hecke eigensymbols

Lemma 5.1. Let K be a complete subfield of \mathbb{C}_p . Let $k, n \in \mathcal{O}_K$ and $m \in \mathbb{Q}_{\geq 0}$. Then,

$$\sigma_n^+ : K \left\langle (X-k)/p^m \right\rangle \xrightarrow{\sim} K \left\langle (X-(k+n))/p^m \right\rangle ; X \mapsto X-n \tag{130}$$

is an isometric K-algebra isomorphism with respect to the supremum semi-norm. In particular, the pair of σ_n^+ and

$${}^{a}\sigma_{n}^{+}: B_{K}[k+n, p^{-m}] \xrightarrow{\sim} B_{K}[k, p^{-m}]; \mathfrak{m} \mapsto (\sigma_{n}^{+})^{-1}(\mathfrak{m})$$
 (131)

gives an isomorphism as K-affinoid varieties.

PROOF. We put $T_2 := K\langle X, Y \rangle$ for short. Let ϕ be the K-algebra endomorphism of T_2 defined by $\phi(X) = X - n$ and $\phi(Y) = Y$ (see [4, Corollary 5.1.3/5]). Since the endomorphism defined by $X \mapsto X + n$ and $Y \mapsto Y$ gives the inverse of ϕ , we see that $\phi \in \operatorname{Aut}_{K-\operatorname{alg}}(T_2)$. Write \mathfrak{a} for the principal ideal of T_2 generated by $X - k - p^m Y$, and hence $\phi(\mathfrak{a}) = (X - (k+n) - p^m Y)$. Then the natural projection $T_2 \twoheadrightarrow T_2/\phi(\mathfrak{a})$ composed with ϕ induces the K-algebra isomorphism σ_n^+ by [4, Proposition 6.1.4/4]. Since σ_n^+ is an integral monomorphism, it is isometric by [4, Proposition 6.2.2/1].

We put

155

$$B_{\sigma} = B_K[k_0, p^{-m}] := {}^a\sigma_2^+(B_f) \cap U, \ B := B_K[k_0 + 2, p^{-m}], \tag{132}$$

$$W_{B,\sigma} := \{ k \in B_{\sigma}(\mathbb{Z}) \mid k \equiv k_0 \pmod{p-1}, \ k+1 > \alpha \}.$$
(133)

We denote by $\sigma := \sigma_2^+ : A(B_{\sigma}) \to A(B)$ the K-algebra isomorphism given by the lemma above. We let $S_{B,\sigma}^{(p)-\text{new}}(N,i)_{\alpha}$ denote $S_B^{(p)-\text{new}}(N,i)_{\alpha}$ viewed as an $A(B_{\sigma})$ -module via σ and $S_{B,\sigma}^{\text{ss}}$ denote S_B^{ss} viewed as an $A(B_{\sigma})$ -submodule of $S_{B,\sigma}^{(p)-\text{new}}(N,i)_{\alpha}$. By (108), we have

$$sp_{k,\sigma}: S_{B,\sigma}^{(p)-new}(N,i)_{\alpha} \twoheadrightarrow S_{B,\sigma}^{(p)-new}(N,i)_{\alpha} \otimes_{A(B_{\sigma})} A(B_{\sigma})/P_{k} \xrightarrow{\sim} S_{B,\sigma}^{(p)-new}(N,i)_{\alpha} \otimes_{A(B)} A(B)_{\sigma}/P_{k+2} \xrightarrow{\sim} S_{k+2}^{(p)-new}(\mathbb{1}_{p};K)_{\alpha}$$
(134)

for any $k \in W_{B,\sigma}$. Let $\{\mathbf{f}_1, \ldots, \mathbf{f}_r\}$ be a basis of $S_{B,\sigma}^{ss}$ consisting of *Hecke eigenforms* given by

$$\mathbf{f}_i := \sum_{n \ge 1} A_i(T(n))q^n \tag{135}$$

for the A(B)-algebra homomorphisms $A_i : \mathfrak{h}_B^{\mathrm{red}} \to A(B)$ obtained in Theorem 4.3. We may assume that $\mathbf{f}_i \in A^{\circ}(B)$ after shrinking B if necessary (Remark 4.5). For any $k \in W_{B,\sigma}$, we put

$$S_{B,\sigma}^{\mathrm{ss},\circ} := \bigoplus_{i=1}^{r} A^{\circ}(B)_{\sigma} \mathbf{f}_{i}, \quad S_{k+2}^{\mathrm{ss}}(\mathcal{O}_{K}) := \bigoplus_{i=1}^{r} \mathcal{O}_{K} \mathrm{sp}_{k,\sigma}(\mathbf{f}_{i}), \tag{136}$$

where $A^{\circ}(B)_{\sigma}$ denote the admissible \mathcal{O}_{K} -algebra $A^{\circ}(B)$ viewed as an $A^{\circ}(B_{\sigma})$ -algebra via $\sigma : A^{\circ}(B_{\sigma}) \to A^{\circ}(B)$. On the other hand, by Theorem 4.7, for any $k \in W_{B,\sigma}$, the surjective $A(B_{\sigma})[\Gamma_{0}(Np)]$ -homomorphism ϕ_{k} (126) induces the surjective Hecke equivariant $A(B_{\sigma})$ -homomorphism ϕ_{k}^{*}

$$\phi_k^* : \operatorname{Symb}_{\Gamma_0(Np)}(D(k_{B_{\sigma}},\varepsilon;A(B_{\sigma})))_{\leq \alpha}^{-} \twoheadrightarrow \operatorname{Symb}_{\Gamma_0(Np)}(D(k_{B_{\sigma}},\varepsilon;A(B_{\sigma})))_{\leq \alpha}^{-} \otimes_{A(B_{\sigma})} A(B_{\sigma})/P_k$$
$$\xrightarrow{\sim} \operatorname{Symb}_{\Gamma_0(Np)}(D(k,\varepsilon;K))_{\leq \alpha}^{-} \xrightarrow{\sim} \operatorname{Symb}_{\Gamma_0(Np)}(L(k,\varepsilon;K))_{\leq \alpha}^{-}.$$
(137)

By (123), we see that ϕ_k^* preserves the integral structure:

$$\phi_k^* : \operatorname{Symb}_{\Gamma_0(Np)}(D(k_{B_\sigma},\varepsilon;A^{\circ}(B_\sigma)))_{\leq \alpha}^{-} \twoheadrightarrow \operatorname{Symb}_{\Gamma_0(Np)}(L(k,\varepsilon;\mathcal{O}_K))_{\leq \alpha}^{-}.$$
(138)

Since $S_{k_0+2}^{ss}(\mathcal{O}_K)$ is spanned by Hecke eigenforms g of level Np, the \mathcal{O}_K -linear extension of the map $g \mapsto \Delta_g^-$ gives the injective Hecke equivariant \mathcal{O}_K -homomorphism

$$\xi_{k_0} : S^{\mathrm{ss}}_{k_0+2}(\mathcal{O}_K) \hookrightarrow \mathrm{Symb}_{\Gamma_0(Np)}(L(k_0,\varepsilon;\mathcal{O}_K))^-_{\leq \alpha}.$$
(139)

We put

$$\operatorname{Symb}_{k_0}^{\operatorname{ss}}(\mathcal{O}_K) := \xi_{k_0}(S_{k_0+2}^{\operatorname{ss}}(\mathcal{O}_K)), \quad \operatorname{Symb}_{B_{\sigma}}^{\operatorname{ss},\circ} := (\phi_{k_0}^*)^{-1}(\operatorname{Symb}_{k_0}^{\operatorname{ss}}(\mathcal{O}_K)).$$
(140)

160

Let $\mathfrak{h}_{B,\sigma}^{\mathrm{red}}$ denote $\mathfrak{h}_{B}^{\mathrm{red}}$ viewed as an $A^{\circ}(B_{\sigma})$ -algebra via $\sigma : A^{\circ}(B_{\sigma}) \to A^{\circ}(B)$. Let $\mathfrak{h}_{B,\sigma}^{\mathrm{red},\circ}$ be the $A^{\circ}(B)_{\sigma}$ subalgebra of $\mathfrak{h}_{B,\sigma}^{\mathrm{red}}$ generated by the Hecke eigensystems corresponding to the basis $\{\mathbf{f}_1,\ldots,\mathbf{f}_r\}$ of $S_{B,\sigma}^{\mathrm{ss}}$ and $\mathfrak{h}_{k_0+2}(\mathcal{O}_K)$ the \mathcal{O}_K -subalgebra of $\mathfrak{h}_{k_0+2}(K)$ generated by the Hecke eigensystems corresponding to the basis $\{\mathrm{sp}_{k,\sigma}(\mathbf{f}_1),\ldots,\mathrm{sp}_{k,\sigma}(\mathbf{f}_r)\}$ of $S_{k+2}^{\mathrm{ss}}(\mathcal{O}_K)$. Then $\mathrm{Symb}_{k_0}^{\mathrm{ss}}(\mathcal{O}_K)$ (resp. $\mathrm{Symb}_{B_{\sigma}}^{\mathrm{ss},\circ}$) is a module over $\mathfrak{h}_{k_0+2}(\mathcal{O}_K)$ (resp. $\mathfrak{h}_{B,\sigma}^{\mathrm{red},\circ}$) via the homomorphisms which send $T(\ell)$ to the usual Hecke operator T_{ℓ} .

Proposition 5.2. There exists a $\mathfrak{h}_{B,\sigma}^{\mathrm{red},\circ}$ -isomorphism $\Xi: S_{B,\sigma}^{\mathrm{ss},\circ} \xrightarrow{\sim} \mathrm{Symb}_{B_{\sigma}}^{\mathrm{ss},\circ}$ such that the following diagram commutes:

after shrinking the disk B_{σ} around the center k_0 if necessary.

PROOF. We put $A := A^{\circ}(B_{\sigma}), \mathfrak{h} := \mathfrak{h}_{B,\sigma}^{\mathrm{red},\circ}, S := S_{B,\sigma}^{\mathrm{ss},\circ}, \text{ and Symb} := \mathrm{Symb}_{B_{\sigma}}^{\mathrm{ss},\circ}$ for short. Let t_{k_0} be a generator of the maximal ideal P_{k_0} of A at the closed point k_0 . Since ξ_{k_0} gives the isomorphism $S/t_{k_0}S \xrightarrow{\sim} \mathrm{Symb}/t_{k_0} \mathrm{Symb}$, it suffices to prove that there exists a \mathfrak{h} -isomorphism $\Xi : S \xrightarrow{\sim} \mathrm{Symb}$ such that the following diagram commutes:

after shrinking the disk B_{σ} around the center k_0 if necessary. Let $\mathfrak{h}_{(k_0)} := \mathfrak{h} \otimes_A A_{P_{k_0}}$ be the localization of \mathfrak{h} at P_{k_0} . Since $\mathfrak{h}_{(k_0)}$ is Noetherian and not Artinian, we see that the Krull dimension of \mathfrak{h} is 1 by Krull's principal ideal theorem (see [18, Theorem 13.5]). By [18, Theorem 2.3], the embedding dimension of \mathfrak{h} is 1, and hence \mathfrak{h} is a regular local ring of Krull dimension 1. By [18, Theorem 19.2], the global dimension of \mathfrak{h} is 1, which implies Symb has a finite injective dimension less than or equal to 1 by [18, Lemma 2, Section 19]. Let $S_{(k_0)} := S \otimes_{\mathfrak{h}} \mathfrak{h}_{(k_0)}$ and $\operatorname{Symb}_{(k_0)} := \operatorname{Symb} \otimes_{\mathfrak{h}} \mathfrak{h}_{(k_0)}$ be the localizations at P_{k_0} . Let $t_{(k_0)}$ be the image of t_{k_0} in $\mathfrak{h}_{(k_0)}$, and hence $t_{(k_0)}$ belongs to the annihilator of $\mathfrak{h}_{(k_0)}/P_{k_0}\mathfrak{h}_{(k_0)}$. Since $\mathfrak{h}_{(k_0)}$ is A-torsion-free and A is an integral domain, we see that $t_{(k_0)}$ is $\mathfrak{h}_{(k_0)}$ -regular, $S_{(k_0)}$ -regular, and $\operatorname{Symb}_{(k_0)}$ -regular. By [18, Lemma 2, Section 18], we see that both $S_{(k_0)}$ and $\operatorname{Symb}_{(k_0)}$ are maximal Cohen-Macaulay modules. By [8, Proposition 21.13], there exists a $\mathfrak{h}_{(k_0)}$ -isomorphism $\Xi_{(k_0)} : S_{(k_0)} \xrightarrow{\sim} \operatorname{Symb}_{(k_0)}$ such that the following diagram commutes:

Therefore we obtain the desired commutative diagram after shrinking the disk B_{σ} around the center k_0 if necessary.

By the proposition above, we have the stronger result than [23, Theorem 4.13] in that we can take an error term (denoted by Ω_{κ} in [23]) of the *p*-adic interpolation as a *p*-adic unit u_k as follows:

Theorem 5.3. Let $f \in S_{k_0+2}^{\text{new}}(N,\varepsilon)_{\alpha}$ be a primitive form with $k_0 + 1 > \alpha \neq (k_0 + 1)/2$, K a complete subfield of \mathbb{C}_p containing the p-adic completion of the Hecke field \mathbb{Q}_{f^*} , and \mathbf{f} a Coleman family passing through f^* . Then there exist a K-affinoid disk $B = B_K[k_0, p^{-m}]$ with some positive integer m and a Hecke eigenvector $\Phi_{\mathbf{f}} \in \text{Symb}_{B_{\sigma}}^{\text{ss},\circ}$ with the same eigenvalues as \mathbf{f} such that for any $k \in W_{B,\sigma}$, there exists $u_k \in \mathcal{O}_K^{\times}$ such that we have the following:

1. $\phi_k^*(\Phi_\mathbf{f}) = u_k \Delta_{\mathbf{f}(k+2)}^-$.

170

2. $\phi_{k_0}^*(\Phi_{\mathbf{f}}) = \Delta_{f^*}^-$ (*i.e.*, $u_{k_0} = 1$).

PROOF. The Hecke equivariant isomorphism Ξ as Proposition 5.2 induces a Hecke equivariant \mathcal{O}_K -isomorphism Ξ_k as follows:

We put $\Phi_{\mathbf{f}} := \Xi(\mathbf{f})$. Then we see that $\phi_k^*(\Phi_{\mathbf{f}}) = \Xi_k(\mathbf{f}(k+2))$ is a generator of $\lambda_{\mathbf{f}(k+2)}$ -eigenmodule

$$\operatorname{Symb}_{\Gamma_0(Np)}(L(k,\varepsilon;\mathcal{O}_K))^{-}[\lambda_{\mathbf{f}(k+2)}].$$
(145)

¹⁷⁵ By [13, Proposition 3.3], the $\lambda_{\mathbf{f}(k+2)}$ -eigenmodule is generated by $\Delta_{\mathbf{f}(k+2)}$ over \mathcal{O}_K . We thus the first assertion and the second assertion follows from $\Xi_{k_0} = \xi_{k_0}$.

We refer to $\Phi_{\mathbf{f}}$ obtained in the theorem above as a *Hecke eigensymbol* attached to a Coleman family \mathbf{f} .

5.2. A p-adic analytic family of the D-th Shintani lifting for a Coleman family

Hereafter, we assume that k_0 is even and $\varepsilon = \chi^2$ with a Dirichlet character χ modulo N. We replace the notation k_0 by $2k_0$ so that we remark that the set $W_{B,\sigma}$ defined by (133) is replaced as follows:

$$W_{B,\sigma} = \{k \in \mathbb{Z} \mid k \equiv 2k_0 \pmod{(p-1)p^m}, k+1 > \alpha\}.$$
(146)

We consider the family of $\theta_D^{\text{alg}}(\mathbf{f}(2k+2))$'s for $2k \in W_{B,\sigma}$. Let n be a positive integer with $\chi(-1)(-1)^{k+1}n \equiv 0, 1 \pmod{4}$. We define the n-th coefficient of a formal power series that interpolates the family of the D-th Shintani lifting below. Let t be a positive divisor of N/c_{χ} and $Q \in \mathcal{L}_{tc_{\chi}Np}(\Delta_{n,t})$. Assume that $\operatorname{ord}_p(n) \leq 1$. Then we have the following:

Lemma 5.4. Let c be the integer given by [a, b, c] = Q. Then we have $p \nmid c$. In particular, for any $(x, y) \in \mathbb{Z}_p^{\times}$, we have $Q(x, y) \in \mathbb{Z}_p^{\times}$.

PROOF. We put $\Delta := \Delta_{n,t}$ for short. By (39), there exist a positive integer l with $l^2 \mid \Delta$, a integer $\varrho \in S_{Np}(\Delta/l^2)$, and $m \parallel m(l,\varrho) := (Np,\varrho,(\varrho^2 - \Delta/l^2)/4Np)$ such that $Q \in l \cdot \mathcal{L}^0_{Np,\varrho,m,m(l,\varrho)/m}(\Delta/l^2)$. Since $\Delta \neq 0 \pmod{p^2}$ from $\operatorname{ord}_p(n) \leq 1$, we have $p \nmid l$. If $p \mid m(l,\varrho)$, then we have $p \mid \varrho$ and $\varrho^2 \equiv \Delta/l^2 \pmod{p^2}$, and hence $\Delta/l^2 \equiv 0 \pmod{p^2}$. This is a contradiction to $\Delta \neq 0 \pmod{p^2}$. Thus we have $p \nmid m(l,\varrho)$, and hence $p \nmid c$.

By the lemma above, we see that $Q(x,y)^{k_{B_{\sigma}}}$ is well-defined analytic function on $\mathbb{Z}_p \times \mathbb{Z}_p^{\times}$. We define $J_Q \in \operatorname{Hom}_{A^{\circ}(B_{\sigma})}(D(k_{B_{\sigma}},\chi^2;A^{\circ}(B_{\sigma})),A^{\circ}(B_{\sigma}))$ by

$$J_Q(\mu) := \int_{\mathbb{Z}_p \times \mathbb{Z}_p^\times} Q(x, y)^{k_{B_\sigma}} d\mu(x, y)$$
(147)

Then we have the following:

Lemma 5.5. For any $2k \in W_{B,\sigma}$ and $\mu \in D(k_{B_{\sigma}}, \chi^2; A^{\circ}(B_{\sigma}))$, we have

$$J_Q(\mu)(2k) = [\phi_{2k}(\mu), Q^k(X, Y)].$$
(148)

In particular, by Theorem 5.3, we have

$$\chi_0(Q)J_Q(\Phi_{\mathbf{f}}(\partial C_Q))(2k) = u_{2k}(\Omega(\mathbf{f}(2k+2))^{-})^{-1}I_{k,\chi}(\mathbf{f}(2k+2),Q)$$
(149)

Proof.

$$\begin{split} J_Q(\mu)(2k) &= \int_{\mathbb{Z}_p \times \mathbb{Z}_p^{\times}} Q(x, y)^k d\mu_{2k}(x, y) \\ &= \int_{\mathbb{Z}_p \times \mathbb{Z}_p^{\times}} \left[(yX - xY)^{2k}, Q^k(X, Y) \right] d\mu_{2k}(x, y) \\ &= \left[\int_{\mathbb{Z}_p \times \mathbb{Z}_p^{\times}} (yX - xY)^{2k} d\mu_{2k}(x, y), Q^k(X, Y) \right] = [\phi_{2k}(\mu), Q^k(X, Y)]. \end{split}$$

Definition 5.6. Let D be a fundamental discriminant with $\chi(-1)(-1)^{k_0+1}D > 0$ and (D, Np) = 1, and $\Phi_{\mathbf{f}} \in \operatorname{Symb}_{B_{\sigma}}^{ss}$ a Hecke eigensymbol attached to \mathbf{f} . Let n be a positive integer with $\chi(-1)(-1)^{k+1}n \equiv 0, 1 \pmod{4}$ and $\operatorname{ord}_p(n) \leq 1$, t a positive divisor of N/c_{χ} , and $Q \in \mathcal{L}_{tc_{\chi}Np}(\Delta_{n,t})$. We set

$$J_{B_{\sigma}}(Q) := \chi_0(Q) J_Q(\Phi_{\mathbf{f}}(\partial C_Q)) \in A^{\circ}(B_{\sigma}).$$
(150)

We put

$$a_{n}(\theta_{B_{\sigma},D}(\mathbf{f})) := \sum_{t \mid c_{\chi}^{-1}N} \mu \chi_{D} \chi_{0}^{-1}(t) t^{-k_{B_{\sigma}}-1} \sum_{Q \in \mathcal{L}_{tc_{\chi}Np}(\Delta_{n,t})/\Gamma_{0}(Np)} \omega_{D}(Q) J_{B_{\sigma}}(Q).$$
(151)

Let m be a positive integer and v a non-negative integer such that $0 \leq \operatorname{ord}_p(m/p^{2v}) \leq 1$. We put

$$a_m(\theta_{B_\sigma,D}(\mathbf{f})) := a_p(\mathbf{f})^v a_{m/p^{2v}}(\theta_{B_\sigma,D}(\mathbf{f}))$$
(152)

if $\chi(-1)(-1)^{k+1}m \equiv 0, 1 \pmod{4}$ and $a_m(\theta_{B_{\sigma},D}(\mathbf{f})) := 0$ otherwise. For $i \in \mathbb{Z}/4\mathbb{Z}$, we define the *n*-th coefficient of $\theta_{B_{\sigma},D}^i(\mathbf{f}) \in A^{\circ}(B_{\sigma})[[q]]$ by

$$a_n(\theta^i_{B_{\sigma},D}(\mathbf{f})) := \left(1 - p^{-1}\right) c^i_{B_{\sigma},D} \cdot a_n(\theta_{B_{\sigma},D}(\mathbf{f})), \tag{153}$$

where

$$c_{B_{\sigma},D}^{i} := (-1)^{[(i+1)/2]} \chi_{D}(c_{\chi}) \chi(-1)^{1/2} \chi^{-1}(D) 2^{k_{B_{\sigma}}+1} c_{\chi}^{k_{B_{\sigma}}} G(\chi_{0}^{-1}).$$
(154)

¹⁹⁰ We then have the main theorem as follows:

195

Theorem 5.7. Let $f \in S_{2k_0+2}^{\text{new}}(N, \chi^2)_{\alpha}$ be a primitive form with $2k_0 + 1 > \alpha \neq (2k_0 + 1)/2$ and $c_{\chi} \parallel N$, K the *p*-adic completion of the field obtained by adjoining $\chi(-1)^{1/2}|D|^{1/2}G(\chi_0^{-1})$ and the values of χ to the Hecke field \mathbb{Q}_{f^*} , D a fundamental discriminant with $\chi(-1)(-1)^{k_0+1}D > 0$ and (D, Np) = 1. Then there exists a positive integer m_0 such that for any $r > m_0 + 1$, if an integer k satisfies $2k + 1 > \alpha$ and $2k \equiv 2k_0 \pmod{(p-1)p^r}$, then there exist a primitive form $f_{2k+2} \in S_{2k+2}^{\text{new}}(N, \chi^2; \mathcal{O}_K)_{\alpha}$ such that

$$e_k \theta_D^{\mathrm{alg}}(f_{2k+2}^*) \equiv \theta_D^{\mathrm{alg}}(f^*) \pmod{p^{r-m_0}\mathcal{O}_K}$$
(155)

for some $e_k \in \mathcal{O}_K^{\times}$ and f_{2k+2}^* lies in a Coleman family passing through f^* .

PROOF. By Theorem 5.3, we have $\Phi_{\mathbf{f}} \in \operatorname{Symb}_{B_{\sigma}}^{\operatorname{ss},\circ}$ such that for any $2k \in W_{B,\sigma}$, there exists $u_{2k} \in \mathcal{O}_{K}^{\times}$ such that $\phi_{2k}^{*}(\Phi_{\mathbf{f}}) = u_{2k}\Delta_{\mathbf{f}(2k+2)}$ and $u_{2k_{0}} = 1$. Recall that $\mathbf{f}(2k+2) = f_{2k+2}^{*}$ for a primitive form $f_{2k+2} \in S_{2k+2}^{\operatorname{new}}(N, \chi^{2}; \mathcal{O}_{K})_{\alpha}$ by Theorem 4.4. Set $e_{k} := (-1)^{[(k_{0}+1)/2]}(-1)^{[(k+1)/2]}u_{2k}$ By Theorem 3.3 and Lemma 5.5, we see that $p \cdot \theta_{B_{\sigma},D}^{k_{0}}(\mathbf{f}) \in A^{\circ}(B_{\sigma})$ has the specialization $\theta_{B_{\sigma},D}^{k_{0}}(\mathbf{f})(2k) = e_{k}\theta_{D}^{\operatorname{alg}}(f_{2k+2}^{*}) \in S_{k+3/2}^{+}(4Np, \tilde{\chi}; \mathcal{O}_{K}).$

Remark 5.8. The *p*-adic interpolation of the classical Shintani lifting has already been done by Stevens [29] and Park [23] for a Hida family and a Coleman family, respectively. Roughly speking, Park proved that for all $n \ge 1$,

$$\left|\Omega_k \cdot a_n(\theta_1^{\text{alg}}(f_{2k+2}^*)) - a_n(\theta_1^{\text{alg}}(f^*))\right|_p < 1$$
(156)

for some $\Omega_k \in K^{\times}$ in [23]. The significant difference between their results and our result above is that we can take the error term e_k of the *p*-adic interpolation as a *p*-adic unit, and hence the congruence makes sense. Indeed, on the congruence (155), we see that $a_n(\theta_D^{\text{alg}}(f_{2k+2}^*))$ vanishes modulo *p* if and only if $a_n(\theta_D^{\text{alg}}(f^*))$ vanishes modulo *p*. However, even if we assume $\Omega_k \in \mathcal{O}_K$ on (156), the congruence

$$\Omega_k \cdot a_n(\theta_1^{\text{alg}}(f_{2k+2}^*)) \equiv a_n(\theta_1^{\text{alg}}(f^*)) \pmod{p^{r-m_0}\mathcal{O}_K}$$
(157)

cannot tell us that $\theta_1^{\text{alg}}(f_{2k+2}^*)$ vanish modulo p if $\theta_1^{\text{alg}}(f^*)$ vanish modulo p unless Ω_k is a p-adic unit.

We keep the notation as in the theorem above. Since $f_{2k+2} \otimes \chi_D \chi_0^{-1}$ and $f_{2k+2}^* \otimes \chi_D \chi_0^{-1}$ are Hecke eigenforms of trivial character ([20, Lemma 4.3.10]), we have

$$L\left(k+1, f_{2k+2}^* \otimes \chi_D \chi_0^{-1}\right) = \left(1 - \chi_D \chi^{-1}(p) p^k a_p (f_{2k+2}^*)^{-1}\right) L\left(k+1, f_{2k+2} \otimes \chi_D \chi_0^{-1}\right)$$
(158)

by [20, Theorem 4.5.16]. We put

$$L^{\text{alg}}\left(k+1, f_{2k+2}^* \otimes \chi_D \chi_0^{-1}\right) := \frac{k! L\left(k+1, f_{2k+2}^* \otimes \chi_D \chi_0^{-1}\right)}{\pi^{k+1} \Omega(f_{2k+2}^*)^{-1}} \in \mathcal{O}_K.$$
(159)

Then by Proposition 2.10 and Theorem 2.4, we have

$$e_k^{-1}a_{|D|}(\theta_{B_{\sigma},D}^{k_0}(\mathbf{f}))(2k) = (\Omega(f_{2k+2}^*)^{-})^{-1}a_{|D|}\left(\theta_{k,\chi,D}^{Np}(f_{2k+2}^*)\right)$$
(160)

$$= 2\left(1-p^{-1}\right)|D|^{k+1/2}c_{\chi}^{2k+1}R_D(f_{2k+2})L^{\mathrm{alg}}\left(k+1,f_{2k+2}^*\otimes\chi_D\chi_0^{-1}\right).$$
(161)

Since $2(1-p^{-1})|D|^{k_B+1/2}N^{2k_B+1} \in A(B_{\sigma})^{\times}$, we can normalize $a_{|D|}(\theta_{B_{\sigma},D}^{k_0}(\mathbf{f}))$ as

$$L_D(\mathbf{f}) := \left(2\left(1 - p^{-1}\right)|D|^{k_B + 1/2} c_{\chi}^{2k_B + 1}\right)^{-1} a_{|D|}(\theta_{B_{\sigma}, D}^{k_0}(\mathbf{f})) \in A(B_{\sigma})$$
(162)

so that for any $2k \in W_{B,\sigma}$, we have

$$e_k^{-1} L_D(\mathbf{f})(2k) = R_D(f_{2k+2}) L^{\text{alg}}\left(k+1, f_{2k+2}^* \otimes \chi_D \chi_0^{-1}\right).$$
(163)

Corollary 5.9. Let the notation and the assumptions be the same as Theorem 5.7. Then there exists a positive integer r such that for any integer k satisfying $2k + 1 > \alpha$ and $2k \equiv 2k_0 \pmod{(p-1)p^r}$, we have the following non-negative equality:

$$\operatorname{ord}_{p}\left(R_{D}(f_{2k+2})L^{\operatorname{alg}}\left(k+1, f_{2k+2}^{*} \otimes \chi_{D}\chi_{0}^{-1}\right)\right) = \operatorname{ord}_{p}\left(R_{D}(f)L^{\operatorname{alg}}\left(k_{0}+1, f^{*} \otimes \chi_{D}\chi_{0}^{-1}\right)\right)$$
(164)

Moreover, if $R_D(f)L(k_0+1, f \otimes \chi_D\chi_0^{-1}) \neq 0$, then we have

$$\operatorname{ord}_{p}\left(L^{\operatorname{alg}}\left(k+1, f_{2k+2}^{*} \otimes \chi_{D}\chi_{0}^{-1}\right)\right) = \operatorname{ord}_{p}\left(L^{\operatorname{alg}}\left(k_{0}+1, f^{*} \otimes \chi_{D}\chi_{0}^{-1}\right)\right) \ge 0,$$

$$(165)$$

in particular, $L(k+1, f_{2k+2} \otimes \chi_D \chi_0^{-1}) \neq 0.$

PROOF. By Theorem 5.7, there exists a positive integer m_0 such that for any $r > m_0 + 1$, if an integer k satisfies $2k + 1 > \alpha$ and $2k \equiv 2k_0 \pmod{(p-1)p^r}$, then

$$e_k R_D(f_{2k+2}) L^{\text{alg}}\left(k+1, f_{2k+2}^* \otimes \chi_D \chi_0^{-1}\right) \equiv R_D(f) L^{\text{alg}}\left(k_0+1, f^* \otimes \chi_D \chi_0^{-1}\right) \pmod{p^{r-m_0} \mathcal{O}_K}$$
(166)

for some $e_k \in \mathcal{O}_K$. Taking sufficiently large r, we have the first assertion. The last assertion follows from Remark 2.5.(1)

Remark 5.10. We keep the notation as in the corollary above. In general, $R_D(f_{2k+2})$ may vanish. However, as seen in the proof above, if $R_D(f)L(k_0 + 1, f \otimes \chi_D \chi_0^{-1}) \neq 0$, then $R_D(f_{2k+2}) \neq 0$ in a neighborhood of k_0 . In other words, the the signatures of the eigenvalues of the initial primitive form f for the Atkin-Lehner involutions coincide with that of f_{2k+2} for k sufficiently close to k_0 , p-adically (see Remark 2.5.(3)).

205 6. Application

200

We apply Corollary 5.9 assuming that $\chi = 1$, $\alpha = 0$, and N is square-free.

6.1. Congruences between the central L-values attached to cusp forms of different weights

Theorem 6.1. Let $f \in S_{2k+2}^{\text{new}}(N, 1)_0$ and $g \in S_{2k'+2}^{\text{new}}(N, 1)_0$ be primitive forms with $k, k' \ge 0$, and \mathcal{O} the ring of integers of the p-adic completion of the field obtained by adjoining $G(\chi_D)$ to the composite field $\mathbb{Q}_{f^*}\mathbb{Q}_{g^*}$. Assume that $f^* \equiv g^* \pmod{p^{r_0}\mathcal{O}}$ for some positive integer r_0 and that $k \equiv k' \pmod{(p-1)p^r}$ for a sufficiently large integer r and that the Galois representation $\rho_{f^*} : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathcal{O})$ attached to f^* is residually irreducible. Let D be a fundamental discriminant with $(-1)^{k+1}D > 0$ and (D, Np) = 1. Then there exist $e_{k'} \in \mathcal{O}^{\times}$ such that we have

$$R_D(f)L^{\mathrm{alg}}(k+1, f^* \otimes \chi_D) \equiv e_{k'}R_D(f_{2k'+2})L^{\mathrm{alg}}(k'+1, g^* \otimes \chi_D) \pmod{p^{r_0}\mathcal{O}}.$$
(167)

Moreover, if $R_D(f)L(k+1, f \otimes \chi_D) \neq 0$, then we have

$$L^{\mathrm{alg}}(k+1, f^* \otimes \chi_D) \equiv e_{k'} L^{\mathrm{alg}}(k'+1, g^* \otimes \chi_D) \pmod{p^{r_0} \mathcal{O}}.$$
(168)

Remark 6.2. When k = k' in the theorem above, we can take $e_{k'} = 1$ by [30, Corollary 1.11]. Namely, the result in this case is contained in [30, Corollary 1.11].

PROOF. Since f is p-ordinary and ρ_{f^*} is residually irreducible, we may identify our periods defined by (98) with canonical periods in the sense of [30] by [30, Theorem 1.13] and [31, Lemma 3.8]. By Theorem 4.4 and Corollary 5.9, we have

$$f_{2k'+2}^* \equiv f^* \equiv g^* \pmod{p^{r_0}\mathcal{O}},\tag{169}$$

$$e_{k'}R_D(f_{2k'+2})L^{\mathrm{alg}}\left(k'+1, f_{2k'+2}^* \otimes \chi_D\right) \equiv R_D(f)L^{\mathrm{alg}}\left(k+1, f^* \otimes \chi_D\right) \pmod{p^{r_0}\mathcal{O}}$$
(170)

for some $e_{k',D} \in \mathcal{O}^{\times}$. By [30, Corollary 1.11], the congruence (169) between $f_{2k'+2}^*$ and g^* implies

$$L^{\mathrm{alg}}\left(k'+1, f^*_{2k'+2} \otimes \chi_D\right) \equiv L^{\mathrm{alg}}\left(k'+1, g^* \otimes \chi_D\right) \pmod{p^{r_0}\mathcal{O}}.$$
(171)

210 6.2. The Goldfeld conjecture

215

220

225

We first recall Vatsal's result on the Goldfeld conjecture in [30, Section 3]. Let E be an elliptic curve over \mathbb{Q} with a rational potint of order 3. Assume that E has good ordinary reduction at 3 and that the conductor N of E is square-free. Let $q \nmid N$ be any odd prime with $q \equiv 1 \pmod{9}$. Let N_1 be the product of primes $\ell | N$ at which E has nonsplit multiplicative reduction and $N_2 := qN/N_1$. We denote by $f_E \in S_2^{\text{new}}(N, \mathbb{1})_0$ the 3-ordinary primitive form attached to E and f_E^q its q-stabilization.

Theorem 6.3 ([30, Theorem 3.3]). For any negative fundamental discriminant D with (D, Nq) = 1, we have the congruence

$$L^{\text{alg}}(1, f_E^q \otimes \chi_D) \equiv \frac{1}{2} \prod_{\ell \mid N_1: prime} (1 - \chi_D(\ell)/\ell) \prod_{\ell \mid N_2: prime} (1 - \chi_D(\ell)) \cdot L(0, \chi_D)^2 \pmod{3}.$$

Since the analytic class number formula shows that $L(0, \chi_D)$ equals the class number h(D) of $\mathbb{Q}(\sqrt{D})$, up to a 3adic unit, the indivisibility of h(D) by 3 implies that we have $L(1, f_E \otimes \chi_D) \neq 0$ for a fundamental discriminant D with $(D, Np) = 1, \chi_D(\ell) = -1$ for each prime $\ell \mid N_2$ and $\chi_D(\ell)/\ell \equiv -1 \pmod{3}$ for each prime $\ell \mid N_1$ by the theorem above (see [30, Corollary 3.4]). Then, Vatsal showed that $M_{f_E}(X) \gg X$ (see [30, Corollary 3.5]) by using a theorem of Nakagawa and Horie [21] to estimate a proportion of fundamental discriminants D satisfying $3 \nmid h(D)$ and the conditions which we mentioned above. By Corollary 5.9, we have the following:

form $f_{2k+2} \in S_{2k+2}^{\text{new}}(N, 1; \mathbb{Q}_{f_E^*})_0$ such that for any embedding σ of $\mathbb{Q}_{f_E^*}$ into \mathbb{C} , we have $M_{f_{2k+2}^{\sigma}}(X) \gg X$, where f_{2k+2}^* lies in a Coleman family passing through f_E^* and $f_{2k+2}^{\sigma} \in S_{2k+2}^{\text{new}}(N, 1)$ is the primitive form defined by $a_n(f_{2k+2}^{\sigma}) := a_n(f_{2k+2})^{\sigma}$.

PROOF. Let D be a negative fundamental discriminant with (D, Np) = 1, $\chi_D(\ell) = -1$ for each prime $\ell \mid N_2$ and $\chi_D(\ell)/\ell \equiv -1 \pmod{3}$ for each prime $\ell \mid N_1$. By assumption, we have $\chi_D(\ell) = 1$ for each prime $\ell \mid N_1$. Recall that $a_\ell(f_E) = -1$ if $\ell \mid N_1$ and $a_\ell(f_E) = 1$ if $\ell \mid N_2$. We thus have $\chi_D(\ell) = -a_\ell(f_E) = w_\ell(f)$ for any prime $\ell \mid N$ (see (27)), and hence $R_D(f_E) \neq 0$. Then there exists a primitive form $f_{2k+2} \in S_{2k+2}^{\text{new}}(N, 1; \mathbb{Q}_{f_E^*})_0$ satisfying $M_{f_{2k+2}}(X) \gg X$ by Corollary 5.9. For any isomorphism σ of $\mathbb{Q}_{f_E^*}$ into \mathbb{C} , we see that $f_{2k+2}^{\sigma} \in S_{2k+2}^{\text{new}}(N, 1)$ is a primitive form by [26, Proposition 1.2] and the theorem holds by [28, Theorem 1].

Example 6.5. Let *E* be the elliptic curve over \mathbb{Q} given by the equation $y^2 + y = x^3 + x^2 - 9x - 15$. Then *E* has a rational point of order 3 and good ordinary reduction at 3 and is of conductor 19 ([30, Example 3.7]).

Moreover, E has split multiplicative reduction at 19, and hence E satisfies the assumption of the theorem above. Furthermore, equations

$$y^2 + y = x^3 + x^2 + 9x + 1, (172)$$

$$y^{2} + y = x^{3} + x^{2} - 23x - 50, (173)$$

$$y^2 + y = x^3 + x^2 - x - 1, (174)$$

$$y^2 + y = x^3 + x^2 - 49x + 600, (175)$$

give elliptic curves over \mathbb{Q} of conductor 35, 37, 51, and 77, respectively. They have split multiplicative reduction 235 at any prime factor of their conductor and satisfy the assumption of the theorem above.

Acknowledgments

260

The author expresses gratitude to Professor Atsushi Yamagami for his valuable guidance and a lot of useful advice and Professor Atsushi Murase and Professor Bernhard Heim for useful advices and warm encouragement.

- [1] F. Andreatta, A. Iovita, G. Stevens, Overconvergent Eichler-Shimura isomorphisms, J. Inst. Math. Jussieu 240 14 (2) (2015) 221-274.
 - [2] A. Ash, G. Stevens, *p*-adic deformations of arithmetic cohomology, preprint.
 - [3] A. Ash, G. Stevens, Modular forms in characteristic ℓ and special values of their L-functions, Duke Math. J. 53 (3) (1986) 849–868.
- [4] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis. A systematic approach to rigid analytic 245 geometry, Vol. 261 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg New York Tokyo, 1984.
 - [5] G. Böckle, On the density of modular points in universal deformation spaces, Amer. J. of Math. 123 (5) (2001) 985–1007.
- [6] R. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1-3) (1996) 215–241. 250
 - [7] R. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math. 127 (3) (1997) 417–479.
 - [8] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Vol. 150 of Graduate Texts in Mathematics, Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest, 1995.
- [9] B. Gross, W. Kohnen, D. Zagier, Heegner points and derivatives of L-series. II, Math. Ann. 278 (1-4) (1987) 255 497 - 562.
 - [10] H. Hida, On A-adic forms of half integral weight for $SL(2)/\mathbb{Q}$, London Math. Soc. Lecture Note Ser. 215 (1995) 139–166.
 - [11] H. Hida, Modular Forms and Galois Cohomology, Vol. 69 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2000.
 - [12] H. Hida, Y. Maeda, Non-abelian base change for totally real fields, Pacific J. Math. 181 (3) (1997) 189–218.
 - [13] K. Kitagawa, On standard *p*-adic *L*-functions of families of elliptic cusp forms, Comtemp. Math. 165 (1994) 81-110.

- [14] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (2) (1985) 237– 268.
 - [15] W. Kohnen, On the proportion of quadratic character twists of L-functions attached to cusp forms not vanishing at the central point, J. Reine Angew. Math. 508 (1999) 179–187.
 - [16] W. Kohnen, D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981) 175–198.
- 270 [17] H. Kojima, Y. Tokuno, On the Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces and the central values of zeta functions, Tohoku Math. J. 56 (1) (2004) 125–145.
 - [18] H. Matsumura, Commutative Ring Theory, Vol. 8 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
 - [19] T. Miyake, On automorphic forms on GL_2 and hecke operators, Ann. of Math. 94 (1971) 174–189.
- [20] T. Miyake, Modular Forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1989.
 - [21] J. Nakagawa, K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1) (1988) 20-24.
 - [22] K. Ono, C. Skinnner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (3) (1998) 651–660.
- [23] J. Park, p-adic family of half-integral weight modular forms via overconvergent Shintani lifting, Manuscripta Math. 131 (3-4) (2010) 355–384.
 - [24] R. Pollack, G. Stevens, Critical slope p-adic L-functions, J. Lond. Math. Soc. 87 (2) (2013) 428–252.
 - [25] N. Ramsey, p -adic interpolation of square roots of central L-values of modular forms, Math. Ann. 358 (2014) 1031–1058.
- [26] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1) (1972) 130–190.
 - [27] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (3) (1973) 440–481.
 - [28] G. Shimura, On the periods of modular forms, Math. Ann. 229 (3) (1977) 211–221.
 - [29] G. Stevens, Λ-adic modular forms of half-integral weight and a Λ-adic shintani lifting, Comtemp. Math. 174 (1994) 129–151.
- [30] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (2) (1999) 397–419.
 - [31] V. Vatsal, Integral periods for modular forms, Ann. Math. Qué. 37 (2013) 109–128.
 - [32] J. L. Waldspurger, Sur les coefficients de fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (4) (1981) 375–484.
 - [33] A. Yamagami, On p-adic analytic families of eigenforms of infinite slope in the p-supersingular case, Acta Humamistica et Scientifica Universitatis Kyotiensis Natural Science Series no. 41 (2012) 1–17.

265

295