A p-adic analytic family of the D-th Shintani lifting for a Coleman family and congruences between the central L-values

Kenji MAKIYAMA
Department of Mathematics, Kyoto Sangyo University
Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan

Abstract

We will construct a p-adic analytic family of D-th Shintani lifting generalized by Kojima and Tokuno for a Coleman family. Consequently, we will have a p-adic L-function which interpolates the central L-values attached to a Coleman family and obtain a congruence between the central L-values. Focusing on the case of p-ordinary, we will obtain two applications. One of them states that a congruence between Hecke eigenforms of different weights sufficiently close, p-adically, derives a congruence between their central L-values. The other one is about the Goldfeld conjecture in analytic number theory. We will show that there exists a primitive form satisfying the conjecture for each even weight sufficiently close to 2,3 -adically, thanks to a result of Vatsal.

Keywords: modular form, central L-value, p-adic L-function, Coleman family, Shintani lifting, modular symbol
2010 MSC: 11F33, 11F37, 11F27,

Contents

1 Introduction 2
2 Kojima and Tokuno's D-th Shintani lifting 4
2.1 Definition and properties. 4
2.2 Integral binary quadratic forms on which $\Gamma_{0}(M)$ acts 7
2.3 Relationship between $a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f^{*}\right)\right)$ and $a_{|D|}\left(\theta_{k, \chi, D}^{N}(f)\right)$ 9
3 Cohomological interpretation of the D-th Shintani lifting 12
3.1 Modular symbols and the Eichler-Shimura isomorphism 12
3.2 The cohomological D-th Shintani lifting 14
4 Rigid analytic ingredients 15
4.1 Coleman families 15
4.2 Analytic functions and distributions 18
$4.3 \quad$ Slope $\leq h$ decompositon 19
$5 \quad p$-Adic interpolation of the D-th Shintani lifting 19
5.1 Overconvergent Hecke eigensymbols 20
5.2 A p-adic analytic family of the D-th Shintani lifting for a Coleman family 22

[^0]6.1 Congruences between the central L-values attached to cusp forms of different weights. 25
6.2 The Goldfeld conjecture . 26

1. Introduction

Hida is apparently the first to establish a theory of p-adic interpolation of modular forms of half-integral weight in [10. He constructed Λ-adic cusp forms of half-integral weight for $\operatorname{SL}(2) / \mathbb{Q}$ and proved a p-adic interpolation of Waldspurger's formula ([32, Corollary 2]) by using the Shimura correspondence. His result is
5 essentially generalized by Ramsey to the case of finite slope in [25]. The results of Ramsey are not constrained to the setting individual families but apply more broadly to the eigencurve. On the other hand, after Hida's work in [10], Stevens established p-adic interpolation of the classical Shintani lifting for a Hida family ([29]). His result is essentially generalized by Park to the case of finite slope in [23]. However, their two results on the classical Shintani lifting leave some room for improvement since the error term of p-adic interpolation is not necessarily a p-adic unit (see Remark 5.8). The significant problem for p-adic interpolation is to deal with the error term of interpolation. To see this, let f be a function whose values at integer points are algebraic integers and F a p-adic analytic function that has the interpolation property for any k in a neighborhood in the domain of $F, F(k)=e_{k} f(k)$ with some error term $e_{k} \neq 0$. Assume that the values of f and e_{k} are contained in the p-adic integer ring \mathbb{Z}_{p} for each k in some neighborhood B for simplicity. This implies that for $k, k^{\prime} \in B$, we have $e_{k} f(k) \equiv e_{k^{\prime}} f\left(k^{\prime}\right)(\bmod p)$. The problem is that the obtained congruence may be trivial if both e_{k} and $e_{k^{\prime}}$ are not p-adic units. In [16, Kohnen and Zagier proved an explicit Waldspurger's formula by using the D-th Shintani lifting for a fundamental discriminant D. We remark that the D-th Shintani lifting coincides with the classical Shintani lifting when $D=1$ at least for the full modular case ($[16$, Corollary 8$]$). The main purpose of this paper is to present an improvement of Park's construction of a p-adic family of the classical Shintani lifting for a Coleman family (see Theorem 5.7) and interpolate the central L-values attached to primitive forms lying in a Coleman family (see Corollary 5.9).

Notation and terminology. Throughout the paper, we fix an odd prime p, a positive integer N satisfying $(N, 2 p)=1$ and a non-negative rational number α. We assume that $N p \geq 4$ to ensure that $\Gamma_{1}(N p)$ is torsionfree. We denote by $\overline{\mathbb{Q}}$ and $\overline{\mathbb{Q}}_{p}$ an algebraic closure of the rational number field \mathbb{Q}, and the p-adic number field \mathbb{Q}_{p}, respectively. Let \mathbb{C} be the complex number field and \mathbb{C}_{p} the p-adic completion of $\overline{\mathbb{Q}}_{p}$. We fix two embeddings $i_{\infty}: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$ and $i_{p}: \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$, and an isomorphism $\mathbb{C}_{p} \xrightarrow{\sim} \mathbb{C}$ which commutes with i_{∞} and i_{p}. Let ord_{p} be the normalized p-adic additive valuation on \mathbb{C}_{p} so that $\operatorname{ord}_{p}(p)=1$ and $|\cdot|_{p}$ the absolute value given by ord org_{p}. For $z \in \mathbb{C}$, we define $\sqrt{z}=z^{1 / 2}$ so that $-\pi / 2<\arg \left(z^{1 / 2}\right) \leq \pi / 2$ and put $z^{k / 2}:=(\sqrt{z})^{k}$ for each integer k. We denote by $\Gamma_{0}(M)$ the congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ consisting of matrices whose left lower entry is divisible by M. We denote by $S_{k}(M, \varepsilon)$ the space of $\Gamma_{0}(M)$-cusp forms of weight k with a Dirichlet character ε modulo M. We denote by $S_{k}^{\text {new }}(M, \varepsilon)$ the orthogonal complement of the subspace of old forms of level N in $S_{k}(M, \varepsilon)$ with respect to the Petersson inner product. For a modular form f, we denote by $a_{n}(f)$ the n-th Fourier coefficient of f and put $L(s, f):=\sum_{n \geq 1} a_{n}(f) n^{-s}$. We call $f \in S_{k}(M, \varepsilon)$ a Hecke eigenform of level M if f satisfies $f \mid T_{n}=a_{n}(f) f$ for the usual Hecke operators T_{n} on $S_{k}(M, \varepsilon)$ for all positive integers n. We refer to a Hecke eigenform of level M in $S_{k}^{\text {new }}(M, \varepsilon)$ as a primitive form of level M. For a Hecke eigenform $f \in S_{k}(M, \varepsilon)$, the T_{p}-slope of f is defined as $\operatorname{ord}_{p}\left(a_{p}(f)\right)$. We denote by $S_{k}(M, \varepsilon)_{\alpha}$ the subspace of $S_{k}(M, \varepsilon)$ spanned by the generalized eigenspaces for eigenvalues λ of T_{p} with $\operatorname{ord}_{p}(\lambda)=\alpha$. Let $\mathbb{Z}[\varepsilon]$ be the ring generated by the values of ε over \mathbb{Z}. For a $\mathbb{Z}[\varepsilon]$-algebra R and $q:=\exp (2 \pi \sqrt{-1} z)$, we put

$$
\begin{align*}
S_{k}(M, \varepsilon ; R)_{\alpha} & :=\left(S_{k}(M, \varepsilon)_{\alpha} \cap \mathbb{Z}[\varepsilon][[q]]\right) \otimes_{\mathbb{Z}[\varepsilon]} R, \tag{1}\\
S_{k}^{\text {new }}(M, \varepsilon ; R)_{\alpha} & :=\left(S_{k}^{\text {new }}(M, \varepsilon) \cap S_{k}(M, \varepsilon ; \mathbb{Z}[\varepsilon])_{\alpha}\right) \otimes_{\mathbb{Z}[\varepsilon]} R . \tag{2}
\end{align*}
$$

For a Hecke eigenform f, we denote by \mathbb{Q}_{f} the subfield of \mathbb{C} generated over \mathbb{Q} by the eigenvalues of f for the Hecke operators T_{n} for all positive integers n and refer to it as the Hecke field of f. For a Dirichlet character
χ, we denote by χ_{0} the primitive character attached to χ, c_{χ} the conductor of χ, and $G\left(\chi_{0}\right)$ the Gauss sum

$$
{ }_{25}
$$ common multiple of M, c_{ψ}^{2}, and $c_{\psi} c_{\varepsilon}$ ([20, Lemma 4.3.10.(2)]). For a non-zero integer a, we let χ_{a} denote the Kronecker symbol $\chi_{a}(b):=\left(\frac{a}{b}\right)$ defined by [20, (3.1.9)]. We call D a fundamental discriminant if D is either 1 or the discriminant of a quadratic field. We denote by $\mathbb{1}$ the trivial Dirichlet character. By $d \| n$, we mean $d \mid n$

We state the objectives of the paper. Let $f \in S_{2 k_{0}+2}^{\text {new }}\left(N, \chi^{2}\right)_{\alpha}$ be a primitive form with $2 k_{0}+1>\alpha \neq$ $\left(2 k_{0}+1\right) / 2, f^{*} \in S_{2 k_{0}+2}\left(N p, \chi^{2}\right)_{\alpha}$ the p-stabilization, which is a Hecke eigenform of level $N p$ with the same T_{q}-eigenvalues as f for any q except for $q=p$ (see 115), D a fundamental discriminant with $(D, N p)=1$ and $\chi_{D} \chi(-1)(-1)^{k_{0}}=-1$, and K the p-adic completion of the number field obtained by adjoining the values of χ and $\chi(-1)^{1 / 2}|D|^{1 / 2} G\left(\chi_{0}^{-1}\right)$ to the Hecke field $\mathbb{Q}_{f^{*}}$. Then there exists a Coleman family $\left\{f_{2 k+2}^{*}\right\}_{k}$ passing through f^{*}, which consists of the p-stabilizations $f_{2 k+2}^{*}$ of each primitive form $f_{2 k+2} \in S_{2 k+2}^{\text {new }}\left(N, \chi^{2} ; \mathcal{O}_{K}\right)_{\alpha}$ for each $2 k$ in

$$
\begin{equation*}
W:=\left\{k \in \mathbb{Z} \mid k \equiv 2 k_{0}\left(\bmod (p-1) p^{m}\right), k+1>\alpha\right\} \tag{3}
\end{equation*}
$$

satisfying $f_{2 k+2}^{*} \equiv f_{2 k_{0}+2}^{*}=f^{*}(\bmod p)$ (see Theorem4.4). We consider the D-th Shintani lifting $\theta_{k, \chi, D}^{N p}\left(f_{2 k+2}^{*}\right)$, which is a cusp form of half-integral weight $k+3 / 2$ in the Kohnen plus space (see $\sqrt{12}$) for $\theta_{k, \chi, D}^{N p}$ and 7) for the Kohnen plus space). Let $\Omega\left(f_{2 k+2}^{*}\right)^{-} \in \mathbb{C}_{p}^{\times}$be the period attached to $f_{2 k+2}^{*}$ obtained by the fact that the $f_{2 k+2}^{*}$-part of a group of modular symbols is free of rank one over the ring of integer \mathcal{O}_{K} of K (see [13, Proposition 3.3]). By the virtue of cohomological interpretation of the D-th Shintani lifting, we can define the algebraic part of the $|D|$-th Shintani lifting

$$
\begin{equation*}
\theta_{D}^{\mathrm{alg}}\left(f_{2 k+2}^{*}\right):=\left(\Omega\left(f_{2 k+2}^{*}\right)^{-}\right)^{-1} p \cdot \theta_{k, \chi, D}^{N p}\left(f_{2 k+2}^{*}\right) \tag{4}
\end{equation*}
$$

has the Fourier coefficients in \mathcal{O}_{K} (Theorem 3.3), where we use our hypothesis $N p \geq 4$ to ensure that $\Gamma_{0}(N p)$ is torsion-free and identify modular symbols with compactly supported cohomology (see Section 3). We will interpolate a family $\left\{\theta_{D}^{\text {alg }}\left(f_{2 k+2}^{*}\right)\right\}_{k}$, p-adically. According to Theorem 5.3, we may take the error terms of the p-adic interpolation as p-adic units. Then, we will prove the main theorem that for k sufficiently close to k_{0}, p-adically, $\theta_{D}^{\text {alg }}\left(f_{2 k+2}^{*}\right)$ is congruent to $\theta_{D}^{\text {alg }}\left(f^{*}\right)$ modulo p-power, up to a p-adic unit (Theorem 5.7). The remarkable property of the D-th Shintani lifting is that $a_{|D|}\left(\theta_{k, \chi, D}^{N}\left(f_{2 k+2}\right)\right)$ equals $L\left(k+1, f \otimes \chi_{D} \chi_{0}^{-1}\right)$, up to an explicit constant (Theorem 2.4). Since $f_{2 k+2}^{*}$ is not a primitive form of level $N p$, we cannot immediately find a relation between $a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f_{2 k+2}^{*}\right)\right)$ and the central L-value attached to $f_{2 k+2}^{*}$. However, we fortunately see that $a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f_{2 k+2}^{*}\right)\right)$ equals $a_{|D|}\left(\theta_{k, \chi, D}^{N}\left(f_{2 k+2}\right)\right)$, up to the product of $2\left(1-p^{-1}\right)$ and the p-Euler factor (Proposition 2.10). Then we obtain a congruence between the central L-values attached to f^{*} and $f_{2 k+2}^{*}$ (Corollary 5.9). The final section of the paper gives two applications under the assumption that $\chi=\mathbb{1}, \alpha=0$, and N is square-free. One of them states that a congruence between Hecke eigenforms of different weights sufficiently close, p-adically, derives a congruence between their central L-values, up to a p-adic unit (Theorem 6.1). The other application is for the Goldfeld conjecture in analytic number theory. To state the conjecture, let f be a primitive form of weight $2 k+2$ and D a fundamental discriminant. For a positive real number X, we define the number

$$
\begin{equation*}
M_{f}(X):=\sharp\left\{|D| \leq X \mid L\left(k+1, f \otimes \chi_{D}\right) \neq 0\right\} . \tag{5}
\end{equation*}
$$

Then the conjecture states that

$$
\begin{equation*}
M_{f}(X) \gg X \tag{6}
\end{equation*}
$$

i.e., there exists a positive constant c such that for sufficiently large X we have $M_{f}(X)>c X$. Currently, it seems that the best estimate in general case is due to Ono and Skinner [22], who showed $M_{f}(X) \gg X / \log X$ (see [22, Corollary 3]). Suppose that $k+1 \geq 6$ is even. Kohnen [15] proved that there exists a Hecke eigenform $f \in S_{2 k+2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ satisfying (6) (see [15, Corollary 1]). Moreover, he pointed out that (6) holds for any Hecke eigenform $f \in S_{2 k+2}\left(\mathrm{SL}_{2}(\mathbb{Z})\right.$) (see [15, Corollary 2]) assuming a conjecture of Maeda (see [12, Conjecture 1.2]) with respect to each even integer $k+1 \geq 6$. Vatsal showed that a primitive form f attached to a certain elliptic curve over \mathbb{Q} of conductor N with a rational point of order 3 and good ordinary reduction at 3 satisfies (6). Taking $p=3$ (and hence $N \geq 3$ by the assumption that N is odd with $N p \geq 4$) in Theorem 5.7, we expand this result into the case of higher weights (Theorem 6.4). Our result may be regarded as a generalization of Kohnen's result in [15 to the case of odd square-free level $N \geq 3$.

2. Kojima and Tokuno's D-th Shintani lifting

2.1. Definition and properties

Let k be a non-negative integer, M an odd positive integer and χ a Dirichlet character modulo M. Put $\tilde{\chi}:=\chi_{\epsilon} \chi$ with $\epsilon:=\chi(-1)$. We denote the Kohnen plus space by

$$
\begin{equation*}
S_{k+3 / 2}^{+}(4 M, \tilde{\chi}):=\left\{g \in S_{k+3 / 2}^{\mathrm{Sh}}(4 M, \tilde{\chi}) \mid a_{n}(g)=0 \text { if } \chi(-1)(-1)^{k+1} n \equiv 2,3(\bmod 4)\right\} \tag{7}
\end{equation*}
$$

where $S_{k+2 / 3}^{\mathrm{Sh}}(4 M, \tilde{\chi})$ is the space of cusp forms of half-integral weight $k+3 / 2$ with level $4 M$ and a character $\tilde{\chi}$ modulo $4 M$ in the sense of Shimura [27, p. 447]. Let D be a fundamental discriminant with $\chi(-1)(-1)^{k+1} D>0$ and $(D, M)=1$. For $g \in S_{k+3 / 2}^{+}(4 M, \tilde{\chi})$ and each prime ℓ, the Hecke operator $T_{\ell^{2}}$ is defined by

$$
\begin{equation*}
a_{n}\left(g \mid T_{\ell^{2}}\right)=a_{\ell^{2} n}(g)+\chi_{(-1)^{k+1} n} \tilde{\chi}(\ell) \ell^{k} a_{n}(g)+\chi\left(\ell^{2}\right) \ell^{2 k-1} a_{n / \ell^{2}}(g) \tag{8}
\end{equation*}
$$

for any positive integer n with $\chi(-1)(-1)^{k+1} n \equiv 0,1(\bmod 4)$. We define the D-th Shimura lifting $\operatorname{Sh}_{k, \chi, D}^{M}$ by

$$
\begin{equation*}
\operatorname{Sh}_{k, \chi, D}^{M}(g):=\sum_{n \geq 1}\left(\sum_{d \mid n} \chi_{D} \chi(d) d^{k} a_{n^{2}|D| / d^{2}}(g)\right) q^{n} \tag{9}
\end{equation*}
$$

(see [17, (3-1)]). As Kohnen pointed out in his paper [14, p. 241, l. 4-9], the image of the D-th Shimura lifting $\mathrm{Sh}_{k, \chi, D}^{M}$ is contained in the space of cusp forms under the assumption that

$$
\begin{equation*}
\text { either } k \geq 1, M \text { is square-free, or cubic-free and } \chi=\mathbb{1} . \tag{10}
\end{equation*}
$$

Then the following theorem is a restatement of [17, Theorem 3.1] including the case of $k \geq 0$.
Theorem 2.1. We have the commutative diagram:

for all primes ℓ. In this sense, the D-th Shimura lifting $\operatorname{Sh}_{k, \chi, D}^{M}$ is Hecke equivariant.

Now we define the D-th Shintani lifting $\theta_{k, \chi, D}^{M}$ as the adjoint mapping of $\operatorname{Sh}_{k, \chi, D}$ with respect to the Petersson inner product \langle, \rangle, i.e.,

$$
\begin{equation*}
\left\langle g, \theta_{k, \chi, D}^{M}(f)\right\rangle=\left\langle\operatorname{Sh}_{k, \chi, D}^{M}(g), f\right\rangle \tag{12}
\end{equation*}
$$

for every $g \in S_{k+3 / 2}(4 M, \tilde{\chi})$ and $f \in S_{2 k+2}\left(M, \chi^{2}\right)$. Then the D-th Shintani lifting $\theta_{k, \chi, D}^{M}$ is Hecke equivariant, i.e., $\theta_{k, \chi, D}^{M}(f) \mid T_{\ell^{2}}=\theta_{k, \chi, D}^{M}\left(f \mid T_{\ell}\right)$ for all primes ℓ. Whenever we use $\theta_{k, \chi, D}^{M}$, we assume that 10 . Let Δ be a non-zero integer with $\Delta \equiv 0,1(\bmod 4)$. We denote by $[a, b, c]$ the binary quadratic form defined by

$$
\begin{equation*}
[a, b, c](X, Y)=a X^{2}+b X Y+c Y^{2} \tag{13}
\end{equation*}
$$

and call $b^{2}-4 a c$ the discriminant. We denote by $\mathcal{L}(\Delta)$ the set of all integral binary quadratic forms with discriminant Δ. For each integer M, we set

$$
\begin{equation*}
\mathcal{L}_{M}(\Delta):=\{[a, b, c] \in \mathcal{L}(\Delta) \mid a \equiv 0(\bmod M)\} \tag{14}
\end{equation*}
$$

We let $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ act on $[a, b, c] \in \mathcal{L}_{M}(\Delta)$ by

$$
\begin{equation*}
([a, b, c] \circ \gamma)(X, Y):=[a, b, c]\left((X, Y)^{t} \gamma\right) \tag{15}
\end{equation*}
$$

Letting $\gamma=\left(\begin{array}{cc}x & y \\ z & w\end{array}\right)$, we see that the action above is as follows:

$$
\begin{equation*}
[a, b, c] \circ \gamma=\left[a x^{2}+b x z+c z^{2}, 2 a x y+b y z+b x w+2 c z w, a y^{2}+b y w+c w^{2}\right] \tag{16}
\end{equation*}
$$

For each $Q=[a, b, c] \in \mathcal{L}_{M}(\Delta)$, we associate it with the pair $\left(\omega_{Q}, \omega_{Q}^{\prime}\right)$ of points in $\mathbb{P}^{1}(\mathbb{R})=\mathbb{R} \cup\{i \infty\}$ given by

$$
\left(\omega_{Q}, \omega_{Q}^{\prime}\right):= \begin{cases}((-b-2 \sqrt{\Delta}) / 2 a,(-b+2 \sqrt{\Delta}) / 2 a) & \text { if } a \neq 0 \tag{17}\\ (-c / b, i \infty) & \text { if } a=0 \text { and } b>0 \\ (i \infty,-c / b) & \text { if } a=0 \text { and } b<0\end{cases}
$$

and the oriented geodesic path C_{Q} defined as the image in $\Gamma_{0}(M) \backslash \mathfrak{H}$ of the semicircle $a|z|^{2}+b \operatorname{Re} z+c=0$ oriented from ω_{Q} to ω_{Q}^{\prime}. We set $\chi_{0}(Q):=\chi_{0}(c)$. A simple verification shows that for each $f \in S_{2 k+2}\left(M, \chi^{2}\right)$, the integral

$$
\begin{equation*}
I_{k, \chi}(f, Q):=\chi_{0}(Q) \int_{C_{Q}} f(z) Q(z, 1)^{k} d z \tag{18}
\end{equation*}
$$

45 absolutely converges and depends only on the $\Gamma_{0}(M)$-orbit of Q in $\mathcal{L}_{M}(\Delta)$. Then by the same computation as in [17], we have the following explicit expressions of the Fourier coefficients of $\theta_{k, \chi, D}^{M}$.
Theorem 2.2 ([17, Theorem 3.2]). For any $f \in S_{2 k+2}\left(M, \chi^{2}\right)$ and any $n \in \mathbb{Z}_{>0}$ with $\chi(-1)(-1)^{k+1} n \equiv$ $0,1(\bmod 4)$. Then

$$
\begin{equation*}
a_{n}\left(\theta_{k, \chi, D}^{M}(f)\right)=c_{k, \chi, D} \sum_{t \mid c_{\chi}^{-1} M} \mu \chi_{D} \chi_{0}^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{M}(f ; n, t), \tag{19}
\end{equation*}
$$

where we put

$$
\begin{align*}
& c_{k, \chi, D}:=(-1)^{[(k+1) / 2]} 2^{k+1} \chi_{D}\left(c_{\chi}\right) \chi(-1)^{1 / 2} \chi^{-1}(D) c_{\chi}^{k} G\left(\chi_{0}^{-1}\right), \tag{20}\\
& \Delta_{n, t}:=t^{2} c_{\chi}^{2}|D| n, \tag{21}\\
& \gamma_{k, \chi, D}^{M}(f ; n, t):=\sum_{Q \in \mathcal{L}_{t c_{\chi} M}\left(\Delta_{n, t}\right) / \Gamma_{0}(M)} \omega_{D}(Q) I_{k, \chi}(f, Q), \tag{22}
\end{align*}
$$

and let $[x]$ be the greatest integer not greater than x, μ the Möbius function and ω_{D} the generalized genus character as in 14]. Furthermore, if $f \in S_{2 k+2}^{\text {new }}\left(M, \chi^{2}\right)$, then

$$
\begin{equation*}
a_{n}\left(\theta_{k, \chi, D}^{M}(f)\right)=c_{k, \chi, D} \gamma_{k, \chi, D}^{M}(f ; n, 1) \tag{23}
\end{equation*}
$$

Remark 2.3. Since the sum (22) equals the Petersson inner product of f and the oldform of level M for $t \neq 1$, (see [17, (3-16]), we see that

$$
\begin{equation*}
\gamma_{k, \chi, D}^{M}(f ; n, t)=0 \tag{24}
\end{equation*}
$$

for $t \neq 1$ if f is a newform of level M. This is why we obtain the last assertion in the theorem above.
Suppose that $c_{\chi} \| M$. Let ℓ be a prime factor of M / c_{χ}, We put $v_{\ell}:=\operatorname{ord}_{\ell}\left(M / c_{\chi}\right)=\operatorname{ord}_{\ell}(M)$. Let γ_{ℓ} be an element in $\mathrm{SL}_{2}(\mathbb{Z})$ such that

$$
\gamma_{\ell} \equiv \begin{cases}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & \left(\bmod \ell^{2 v_{\ell}}\right) \tag{25}\\
\left(\begin{array}{lc}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\bmod \left(M / \ell^{v_{\ell}}\right)^{2}\right)\end{cases}
$$

We put $\eta_{\ell}:=\gamma_{\ell} \cdot \operatorname{diag}\left(\ell^{v_{\ell}}, 1\right)($ see $[20,(4.6 .21)])$. We define the eigenvalue of f for the Atkin-Lehner involution η_{ℓ} by

$$
\begin{equation*}
w_{\ell}(f):=\chi^{2}\left(\ell^{v_{\ell}}\right) a_{1}\left(\left.f\right|_{2 k+2} \eta_{\ell}\right) \tag{26}
\end{equation*}
$$

If $v_{\ell}=1$, then we have $a_{1}\left(\left.f\right|_{2 k+2} \eta_{\ell}\right)=-\chi^{-2}(\ell) \ell^{-k} a_{\ell}(f)$ by [20, Corollary 4,6,18.(2)] and hence

$$
\begin{equation*}
w_{\ell}(f)=-\ell^{-k} a_{\ell}(f) \in\{ \pm 1\} \tag{27}
\end{equation*}
$$

by [20, Theorem 4.6.17.(2)].
Theorem 2.4 ([17, Theorem 4.2 and (4-12)]). Let $f \in S_{2 k+2}^{\mathrm{new}}\left(M, \chi^{2}\right)$ be a primitive form. Suppose that $c_{\chi} \| M$. We put

$$
\begin{equation*}
R_{D}(f):=\prod_{\ell}\left(1+\chi_{D} \chi\left(\ell^{v_{\ell}}\right) w_{\ell}(f)\left(\frac{1-\chi_{D} \chi^{-1}(\ell) \ell^{-k-1} a_{\ell}(f)}{1-\chi_{D} \chi(\ell) \ell^{-k-1} a_{\ell}(f)^{c}}\right)\right) \tag{28}
\end{equation*}
$$

where \prod_{ℓ} is taken over all prime factors ℓ of M / c_{χ} and $a_{\ell}(f)^{c}$ is the complex conjugate of $a_{\ell}(f)$. Then

$$
\begin{equation*}
a_{|D|}\left(\theta_{k, D, \chi}^{M}(f)\right)=R_{D}(f)|D|^{k+1 / 2} c_{\chi}^{2 k+1} \pi^{-(k+1)} k!L\left(k+1, f \otimes \chi_{D} \chi_{0}^{-1}\right) \tag{29}
\end{equation*}
$$

Remark 2.5. Let the notation and the assumption be the same as the theorem above.

1. If $R_{D}(f) \neq 0$, then $\operatorname{ord}_{p}\left(R_{D}(f)\right)=1$.
2. If $\chi^{2}=\mathbb{1}$, then the Hecke field of f is totally real by [26, Proposition 1.3], and hence

$$
\begin{equation*}
R_{D}(f)=\prod_{\ell}\left(1+\chi_{D} \chi\left(\ell^{v_{\ell}}\right) w_{\ell}(f)\right) \tag{30}
\end{equation*}
$$

3. If $\chi^{2}=\mathbb{1}$ and M / c_{χ} is square-free, then $R_{D}(f) \in\left\{0,2^{\nu\left(M / c_{\chi}\right)}\right\}$ by 27 , where $\nu\left(M / c_{\chi}\right)$ is the number of distinct prime factors of M / c_{χ}. In particular, if $\chi=\mathbb{1}$, then the followings are equivalent:
(a) $R_{D}(f) \neq 0$.
(b) $R_{D}(f)=2^{\nu(M)}$.
(c) $\chi_{D}(\ell)=w_{\ell}(f)$ for all prime divisors ℓ of M.

In this case, the formula 29 is nothing but the result of Kohnen in 14 and the sign of the functional equation of $L\left(s, f \otimes \chi_{D}\right)$ is $(-1)^{k+1} \chi_{D}(-1)$, i.e., if $(-1)^{k+1} \chi_{D}(-1)=-1$, then $L\left(k+1, f \otimes \chi_{D}\right)=0$.

2.2. Integral binary quadratic forms on which $\Gamma_{0}(M)$ acts

We need to prepare more notations for sets of quadratic forms in order to state a key lemma below (Lemma 2.8), which plays an important role in the proof of Proposition 2.10. We refer to 9] for a theory of quadratic forms that we need. We fix a positive integer M and a non-zero integer $\Delta \equiv 1,0(\bmod 4)$ in this subsection. We denoted the set of $\Gamma_{0}(M)$-primitive quadratic forms of discriminant Δ by

$$
\begin{equation*}
\mathcal{L}_{M}^{0}(\Delta):=\left\{[M a, b, c] \in \mathcal{L}_{M}(\Delta) \mid(a, b, c)=1\right\} \tag{31}
\end{equation*}
$$

We set

$$
\begin{equation*}
S_{M}(\Delta):=\left\{\bar{\varrho} \in \mathbb{Z} / 2 M \mathbb{Z} \mid \varrho^{2} \equiv \Delta(\bmod 4 M)\right\} \tag{32}
\end{equation*}
$$

For $\bar{\varrho} \in S_{M}(\Delta)$, we set

$$
\begin{equation*}
\mathcal{L}_{M, \varrho}^{0}(\Delta):=\left\{[M a, b, c] \in \mathcal{L}_{M}^{0}(\Delta) \mid b \equiv \varrho(\bmod 2 M)\right\} \tag{33}
\end{equation*}
$$

Note that the $\Gamma_{0}(M)$-action o defined by 16 preserves $\mathcal{L}_{M, \varrho}^{0}(\Delta)$ and that we have the following decomposition into the disjoint union of $\Gamma_{0}(M)$-invariant sets:

$$
\begin{equation*}
\mathcal{L}_{M}^{0}(\Delta)=\bigsqcup_{\bar{\varrho} \in S_{M}(\Delta)} \mathcal{L}_{M, \varrho}^{0}(\Delta) \tag{34}
\end{equation*}
$$

We then have the following decomposition into the union of $\Gamma_{0}(M)$-invariant sets:

$$
\begin{equation*}
\mathcal{L}_{M}(\Delta)=\bigsqcup_{l^{2} \mid \Delta} l \cdot \mathcal{L}_{M}^{0}\left(\Delta / l^{2}\right)=\bigsqcup_{l^{2} \mid \Delta} \bigcup_{\varrho} \in S_{M}\left(\Delta / l^{2}\right)<\mathcal{L}_{M, \varrho}^{0}\left(\Delta / l^{2}\right) \tag{35}
\end{equation*}
$$

where the disjoint union $\bigsqcup_{l^{2} \mid \Delta}$ is taken over all positive integers l such that $l^{2} \mid \Delta$. For parameters M, Δ, ϱ of $\mathcal{L}_{M, \varrho}^{0}(\Delta)$, we define the greatest common divisor

$$
\begin{equation*}
m_{\varrho}^{M}:=m:=\left(M, \varrho,\left(\varrho^{2}-\Delta\right) / 4 M\right) \tag{36}
\end{equation*}
$$

Note that the definition (36) depends only on ϱ modulo $2 M$. For $[M a, b, c] \in \mathcal{L}_{M, \varrho}^{0}(\Delta)$, we have $(M, b, a c)=m$ and $(a, b, c)=1$, so the two numbers

$$
\begin{equation*}
(M, b, a)=m_{1} \text { and }(M, b, c)=m_{2} \tag{37}
\end{equation*}
$$

are coprime and $m_{1} m_{2}=m$. We denote by $\mathcal{L}_{M, \varrho, m_{1}, m_{2}}^{0}(\Delta)$ the set of forms $[M a, b, c] \in \mathcal{L}_{M, \varrho}^{0}(\Delta)$ satisfying 37 . We then have the following decomposition into the disjoint union of $\Gamma_{0}(M)$-invariant sets:

$$
\begin{equation*}
\mathcal{L}_{M, \varrho}^{0}(\Delta)=\bigsqcup_{m_{1}, m_{2}} \mathcal{L}_{M, \varrho, m_{1}, m_{2}}^{0}(\Delta) \tag{38}
\end{equation*}
$$

where $\bigsqcup_{m_{1}, m_{2}}$ is taken over all pairs $\left(m_{1}, m_{2}\right)$ of positive integers m_{1}, m_{2} satisfying $\left(m_{1}, m_{2}\right)=1$ and $m=m_{1} m_{2}$. Summarizing, we have the following decomposition of $\mathcal{L}_{M}(\Delta)$ into the union of $\Gamma_{0}(M)$-invariant sets:

$$
\begin{equation*}
\mathcal{L}_{M}(\Delta)=\bigsqcup_{l^{2} \mid \Delta \bar{\varrho} \in S_{M}\left(\Delta / l^{2}\right)} \bigsqcup_{m_{1}, m_{2}} l \cdot \mathcal{L}_{M, \varrho, m_{1}, m_{2}}^{0}\left(\Delta / l^{2}\right), \tag{39}
\end{equation*}
$$

where $\bigsqcup_{m_{1}, m_{2}}$ is taken over all pairs $\left(m_{1}, m_{2}\right)$ of positive integers m_{1}, m_{2} satisfying $\left(m_{1}, m_{2}\right)=1$ and

$$
\begin{equation*}
\left(M, \varrho,\left(\varrho^{2}-\Delta / l^{2}\right) / 4 M\right)=m_{1} m_{2} \tag{40}
\end{equation*}
$$

We put $\mathcal{L}^{0}(\Delta):=\mathcal{L}_{1}^{0}(\Delta)$.

Proposition 2.6 ([9, Proposition, p.505]). Let M_{1} and M_{2} be positive integers satisfying $M=M_{1} M_{2}$ and $\left(M_{1}, M_{2}\right)=\left(m_{1}, M_{2}\right)=\left(m_{2}, M_{1}\right)=1$. Then, the mapping $[M a, b, c] \mapsto\left[M_{1} a, b, M_{2} c\right]$ induces a bijection

$$
\begin{equation*}
\mathcal{L}_{M, \varrho, m_{1}, m_{2}}^{0}(\Delta) / \Gamma_{0}(M) \hookrightarrow \mathcal{L}^{0}(\Delta) / \mathrm{SL}_{2}(\mathbb{Z}) \tag{41}
\end{equation*}
$$

${ }^{60}$ We prove the following lemma needed in the proof of Proposition 2.10.
Lemma 2.7. Let $\varrho \in S_{N p}(\Delta)$ and $\varrho^{\prime} \in S_{N}(\Delta)$ and let m, m^{\prime} be positive integers with $m \| m_{\varrho}^{N p}$ and $m^{\prime} \| m_{\varrho^{\prime}}^{N}$. The map $[a, b, c] \mapsto[a, b, c]$ induces a bijection

$$
\begin{equation*}
\mathcal{L}_{N p, \varrho, m, 1}^{0}(\Delta) / \Gamma_{0}(N p) \hookrightarrow \mathcal{L}_{N, \varrho^{\prime}, m^{\prime}, 1}^{0}(\Delta) / \Gamma_{0}(N) \tag{42}
\end{equation*}
$$

Moreover, if (m.p) $=1$, then $\tau:[a, b, c] \mapsto[a / p, b, p c]$ induces a bijection between the same spaces as above.
Proof. Taking $(N p, 1)$ and (N, p) as the ordered pairs $\left(M_{1}, M_{2}\right)$ in Proposition 2.6 for $M:=N p$, we see that both mappings induce two bijections

$$
\begin{equation*}
\mathcal{L}_{N p, \varrho, m, 1}^{0}(\Delta) / \Gamma_{0}(N p) \hookrightarrow \mathcal{L}^{0}(\Delta) / \mathrm{SL}_{2}(\mathbb{Z}) \tag{43}
\end{equation*}
$$

by Proposition 2.6 On the other hand, taking $(N, 1)$ as the ordered pair $\left(M_{1}, M_{2}\right)$ in Proposition 2.6 for $M:=N$, we see that the mapping $[a, b, c] \mapsto[a, b, c]$ induces a bijection

$$
\begin{equation*}
\mathcal{L}^{0}(\Delta) / \mathrm{SL}_{2}(\mathbb{Z}) \hookrightarrow \mathcal{L}_{N, \varrho^{\prime}, m^{\prime}, 1}^{0}(\Delta) / \Gamma_{0}(N) \tag{44}
\end{equation*}
$$

by Proposition 2.6. Composing these maps, we obtain the assertion.
Assume that Δ is a perfect square and let δ be a positive integer such that $\Delta=\delta^{2}$. For a positive integer M^{\prime} with $M^{\prime} \| M$, we define a $\operatorname{map} w_{M^{\prime}}: S_{M}(\Delta) \rightarrow S_{M}(\Delta)$ by

$$
w_{M^{\prime}}(\varrho) \equiv \begin{cases}\varrho & \left(\bmod 2 M / M^{\prime}\right) \tag{45}\\ -\varrho & \left(\bmod M^{\prime}\right)\end{cases}
$$

Similarly to Atkin-Lehner involutions $W_{M^{\prime}}$ on quadratic forms in [9, Section 1], these maps $w_{M^{\prime}}$ are bijections and satisfy the relation $w_{M^{\prime}} \circ w_{M^{\prime \prime}}=w_{M^{\prime} M^{\prime \prime} /\left(M^{\prime}, M^{\prime \prime}\right)^{2}}$, so they form a group of order 2^{t}, where t is the number of distinct prime factors of M.

Lemma 2.8. Let c be a positive integer with $c \| M$ and d an integer with $(d, M)=1$. Then we have the decomposition into the disjoint union of $\Gamma_{0}(M)$-invariant sets

$$
\begin{equation*}
\mathcal{L}_{c M}\left(c^{2} d^{2}\right)=\bigsqcup_{l \mid c d} \bigsqcup_{M^{\prime} \| c^{-1} M} l \cdot \mathcal{L}_{M, w_{M^{\prime}}(c d / l), c /(c, l), 1}^{0}\left(c^{2} d^{2} / l^{2}\right) \tag{46}
\end{equation*}
$$

where $\bigsqcup_{l \mid c d}$ and $\bigsqcup_{M^{\prime} \| c^{-1} M}$ is taken over all positive divisors l of $c d$ and all positive integers M^{\prime} with $M^{\prime} \| c^{-1} M$, respectively.

Proof. We put $\delta:=c d$ and $\Delta:=\delta^{2}$ for short. For a positive divisor l of δ and $\varrho \in S_{M}\left(\Delta / l^{2}\right)$, we denote by $m(l, \varrho)$ the greatest common divisor of M, ϱ, and $\left(\varrho^{2}-\Delta / l^{2}\right) / 4 M$. From

$$
\mathcal{L}_{M}(\Delta)=\bigsqcup_{l \mid \delta} \bigcup_{\varrho \in S_{M}\left(\Delta / l^{2}\right)} \bigsqcup_{m \| m(l, \varrho)} l \cdot \mathcal{L}_{M, \varrho, m, m(l, \varrho) / m}^{0}\left(\Delta / l^{2}\right)
$$

((39)), we see that

$$
\mathcal{L}_{c M}(\Delta)=\bigsqcup_{l \mid \delta} \bigcup_{\varrho \in S_{M}\left(\Delta / l^{2}\right)} \mathcal{L}_{c M}(\Delta)_{l, \varrho}, \text { where } \mathcal{L}_{c M}(\Delta)_{l, \varrho}:=\bigsqcup_{\substack{m \| m(l, \varrho) \\ l m \equiv 0(\bmod c)}} l \cdot \mathcal{L}_{M, \varrho, m, m(l, \varrho) / m}^{0}\left(\Delta / l^{2}\right)
$$

Since $l m \equiv 0(\bmod c)$ implies $m(l, \varrho) \equiv 0(\bmod c /(c, l))$ for $m \| m(l, \varrho)$, we see that the union runs over $\varrho \in$ $S_{M}\left(\Delta / l^{2}\right)$ such that $m(l, \varrho) \equiv 0(\bmod c /(c, l))$ we have Via the natural bijection from $G:=\left\{M^{\prime} \in \mathbb{Z}_{>0} \mid M^{\prime} \| M\right\}$ into the group of $w_{M^{\prime}}$'s, we may regard G as a group and G acts on the set $S_{M}\left(\Delta / l^{2}\right)$ for any positive divisor l of δ. For a prime divisor q of M, we put $v_{q}:=\operatorname{ord}_{q}(M), n:=\left[v_{q} / 2\right]$, and,

$$
R_{q}:=\left\{m p^{n^{\prime}} \mid m \in \mathbb{Z}, 0 \leq m \leq\left(q^{n}-1\right) / 2\right\} \text { with } n^{\prime}:= \begin{cases}n & \text { if } v_{q} \text { is even } \tag{47}\\ n+1 & \text { if } v_{q} \text { is odd }\end{cases}
$$

Notice that $R_{q} \cup\left(-R_{q}\right)$ is a complete system of representatives for $\left\{\bar{x} \in \mathbb{Z} / q^{v_{q}} \mathbb{Z} \mid x^{2} \equiv 0\left(\bmod q^{v_{q}}\right)\right\}$. Let S be the set of prime divisors q of M such that $\Delta / l^{2} \equiv 0\left(\bmod q^{v_{q}}\right)$. For $r=\left(r_{q}\right)_{q} \in \Pi_{q \in S} R_{q}$, we let ϱ_{r} be an element in $S_{M}\left(\Delta / l^{2}\right)$ such that for any prime factor q of $2 M$,

$$
\varrho_{r} \equiv\left\{\begin{array}{ll}
r_{q} & \left(\bmod q^{v_{q}}\right) \tag{48}
\end{array} \text { if } q \in S,\right.
$$

We then have the G-orbit decomposition $S_{M}\left(\Delta / l^{2}\right)=\bigsqcup_{\left(r_{q}\right)_{q} \in \Pi_{q \in S} R_{q}} G \cdot \varrho_{r}$. Note that $m(l, \varrho)=m\left(l, \varrho_{r}\right)$ if $\varrho \in G \cdot \varrho_{r}$ and that for any $\varrho \in S_{M}\left(\Delta / l^{2}\right)$, we see that $m(l, \varrho) \equiv 0(\bmod c /(c, l))$ if and only if $\varrho \in G \cdot \delta / l$, and in this case $m(l, \varrho)=c /(c, l)$. We thus have

$$
\bigcup_{\substack{\left.\varrho \in S_{M}\left(\Delta / l^{2}\right) \\ l, \varrho\right) \equiv 0(\bmod c /(c, l))}} \mathcal{L}_{c M}(\Delta)_{l, \varrho}=\bigcup_{\varrho \in G \cdot \delta / l} \mathcal{L}_{c M}(\Delta)_{l, \varrho}=\bigcup_{\varrho \in G \cdot \delta / l} l \cdot \mathcal{L}_{M, \varrho, c /(c, l), 1}^{0}\left(\Delta / l^{2}\right)
$$

Here, for $\varrho_{1}, \varrho_{2} \in G \cdot \delta / l$, we see that the intersection of $l \cdot \mathcal{L}_{M, \varrho_{1}, c /(c, l), 1}^{0}\left(\Delta / l^{2}\right)$ and $l \cdot \mathcal{L}_{M, \varrho_{2}, c /(c, l), 1}^{0}\left(\Delta / l^{2}\right)$ is non-empty if and only if $\varrho_{1} \equiv \varrho_{2}(\bmod 2 M / c)$. Therefore, we have

$$
\bigcup_{\varrho \in G \cdot \delta / l} l \cdot \mathcal{L}_{M, \varrho, c /(c, l), 1}^{0}\left(\Delta / l^{2}\right)=\bigsqcup_{M^{\prime} \| c^{-1} M} l \cdot \mathcal{L}_{M, w_{M^{\prime}}}^{0}(\delta / l), c /(c, l), 1\left(\Delta / l^{2}\right)
$$

2.3. Relationship between $a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f^{*}\right)\right)$ and $a_{|D|}\left(\theta_{k, \chi, D}^{N}(f)\right)$

Lemma 2.9. For any $f^{*} \in S_{2 k+2}\left(N p, \chi^{2}\right)$ and any $n \in \mathbb{Z}_{>0}$ with $\chi(-1)(-1)^{k+1} n \equiv 0,1(\bmod 4)$, we have

$$
\begin{equation*}
a_{n}\left(\theta_{k, \chi, D}^{N p}\left(f^{*}\right)\right)=\left(1-p^{-1}\right) c_{k, \chi, D} \sum_{t \mid c_{\chi}^{-1} N} \mu \chi_{D} \chi_{0}^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{N p}\left(f^{*} ; n, t\right) \tag{49}
\end{equation*}
$$

where recall that $c_{k, \chi, D}, \Delta_{n, t}$, and $\gamma_{k, \chi, D}^{N p}(f ; n, t)$ are given by (20, 21, and 22, respectively.
Proof. We put $a(t):=\mu \chi_{D} \chi^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{N p}\left(f^{*} ; n, t\right)$ for short. We see that

$$
\begin{equation*}
\sum_{t \mid c_{\chi}^{-1} N p} a(t)=\sum_{t \mid c_{\chi}^{-1} N}(a(t)+a(p t)) \tag{50}
\end{equation*}
$$

By Theorem 2.2 , it suffices to prove $a(p t)=-p^{-1} a(t)$. Let $t \mid c_{\chi}^{-1} N$ and $Q \in \mathcal{L}_{p t c_{\chi} N p}\left(\Delta_{n, p t}\right) / \Gamma_{0}(N p)$. Notice that the coefficients of the quadratic form Q are divisible by p. Since $\omega_{D}(Q)=\chi_{D}(p) \omega_{D}\left(p^{-1} Q\right)$ and $I_{k, \chi}\left(f^{*}, Q\right)=\chi(p) p^{k} I_{k, \chi}\left(f^{*}, p^{-1} Q\right)$, we see that

$$
\gamma_{k, \chi, D}^{N p}\left(f^{*} ; n, p t\right)=\chi_{D} \chi(p) p^{k} \gamma_{k, \chi, D}^{N p}\left(f^{*} ; n, t\right)
$$

70 We thus have $a(p t)=\mu \chi_{D} \chi^{-1}(p t)(p t)^{-k-1} \cdot \chi_{D} \chi(p) p^{k} \gamma_{k, \chi, D}^{N p}\left(f^{*} ; n, t\right)=-p^{-1} a(t)$.
For a formal power series $\sum_{n \geq 0} a(n) q^{n}$, we define

$$
\begin{equation*}
\left(\sum_{n \geq 0} a(n) q^{n}\right) \mid V_{p}:=\sum_{n \geq 0} a(n) q^{p n} \tag{51}
\end{equation*}
$$

Proposition 2.10. Let $f \in S_{2 k+2}^{n e w}\left(N, \chi^{2}\right)$ be a primitive form with $c_{\chi} \| N$ and D a fundamental discriminant with $\chi(-1)(-1)^{k+1} D>0$ and $(D, N p)=1$. We put $f^{*}:=f-\beta \cdot f \mid V_{p} \in S_{2 k+2}\left(N p, \chi^{2}\right)$ with $\beta \in \mathbb{C}$. Then,

$$
\begin{equation*}
a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f^{*}\right)\right)=2\left(1-p^{-1}\right)\left(1-\chi_{D} \chi^{-1}(p) p^{-k-1} \beta\right) \cdot a_{|D|}\left(\theta_{k, \chi, D}^{N}(f)\right) \tag{52}
\end{equation*}
$$

Proof. By Lemma 2.9 and Theorem 2.2, we have

$$
\begin{align*}
a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f^{*}\right)\right) & =\left(1-p^{-1}\right) c_{k, \chi, D} \sum_{t \mid c_{\chi}^{-1} N} \mu \chi_{D} \chi^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{N p}\left(f^{*} ;|D|, t\right) \tag{53}\\
a_{|D|}\left(\theta_{k, \chi, D}^{N}(f)\right) & =c_{k, \chi, D} \sum_{t \mid c_{\chi}^{-1} N} \mu \chi_{D} \chi^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{N}(f ;|D|, t) \\
& =c_{k, \chi, D} \cdot \gamma_{k, \chi, D}^{N}(f ;|D|, 1) \tag{54}
\end{align*}
$$

where the last equation is due to (24). We put $I_{Q}(f):=\omega_{D}(Q) I_{k, \chi}(f, Q)$ for short. Remember that, from the notation 22 , we have

$$
\begin{align*}
\gamma_{k, \chi, D}^{N p}\left(f^{*} ;|D|, t\right) & =\sum_{Q \in \mathcal{L}_{t c_{\chi}{ }^{N} p}\left(\Delta_{|D|, t}\right) / \Gamma_{0}(N p)} I_{Q}\left(f^{*}\right) \tag{55}\\
\gamma_{k, \chi, D}^{N}(f ;|D|, t) & =\sum_{Q \in \mathcal{L}_{t c_{\chi} N}\left(\Delta_{|D|, t}\right) / \Gamma_{0}(N)} I_{Q}(f) \tag{56}
\end{align*}
$$

Note that

$$
\begin{equation*}
\gamma_{k, \chi, D}^{N p}\left(f^{*} ;|D|, t\right)=\gamma_{k, \chi, D}^{N p}(f ;|D|, t)-\beta \cdot \gamma_{k, \chi, D}^{N p}\left(f\left|V_{p} ;|D|, t\right)\right. \tag{57}
\end{equation*}
$$

We put

$$
\begin{equation*}
a:=\sum_{t \mid c_{\chi}^{-1} N} \mu \chi_{D} \chi^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{N p}\left(f^{*} ;|D|, t\right) . \tag{58}
\end{equation*}
$$

Then $a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f^{*}\right)\right)=\left(1-p^{-1}\right) c_{k, \chi, D} \cdot a$. Let t be a positive and square-free divisor of N / c_{χ} so that $t c_{\chi} \| N$. We put $\delta_{t}:=t c_{\chi} D$ for short so that $\Delta_{|D|, t}=\delta_{t}^{2}$. Taking $\left(N p, t c_{\chi}, D\right)$ as the ordered triple (M, c, d) in Lemma 2.8, we have

$$
\begin{equation*}
\mathcal{L}_{t c_{\chi} N p}\left(\Delta_{|D|, t}\right)=\bigsqcup_{l \mid \delta_{t} M^{\prime} \|\left(t c_{\chi}\right)^{-1} N p} \bigsqcup_{\mathcal{L}}\left(l, M^{\prime}\right)=\mathcal{L}^{(p)} \sqcup \mathcal{L}_{p} \tag{59}
\end{equation*}
$$

where we put

$$
\begin{align*}
& \mathcal{L}\left(l, M^{\prime}\right):=l \cdot \mathcal{L}_{N p, w_{M^{\prime}}\left(\delta_{t} / l\right), t c_{\chi} /\left(t c_{\chi}, l\right), 1}^{0}\left(\Delta_{|D|, t} / l^{2}\right) \tag{60}\\
& \mathcal{L}^{(p)}:=\bigsqcup_{l \mid \delta_{t}} \bigsqcup_{M^{\prime} \|\left(t c_{\chi}\right)^{-1} N} \mathcal{L}\left(l, M^{\prime}\right) \text { and } \mathcal{L}_{p}:=\bigsqcup_{l \mid \delta_{t} M^{\prime} \|\left(t c_{\chi}\right)^{-1} N} \bigsqcup \mathcal{L}\left(l, p M^{\prime}\right) . \tag{61}
\end{align*}
$$

We thus have

$$
\begin{align*}
\gamma_{k, \chi, D}^{N p}(f ;|D|, t) & =\sum_{Q \in \mathcal{L}^{(p)} / \Gamma_{0}(N p)} I_{Q}(f)+\sum_{Q \in \mathcal{L}_{p} / \Gamma_{0}(N p)} I_{Q}(f), \tag{62}\\
\gamma_{k, \chi, D}^{N p}\left(f\left|V_{p} ;|D|, t\right)\right. & =\sum_{Q \in \mathcal{L}^{(p)} / \Gamma_{0}(N p)} I_{Q}\left(f \mid V_{p}\right)+\sum_{Q \in \mathcal{L}_{p} / \Gamma_{0}(N p)} I_{Q}\left(f \mid V_{p}\right) . \tag{63}
\end{align*}
$$

Taking $\left(N, t c_{\chi}, D\right)$ as the ordered triple (M, c, d) in Lemma 2.8 , we have

$$
\begin{equation*}
\mathcal{L}_{t c_{\chi} N}\left(\Delta_{|D|, t}\right)=\bigsqcup_{l \mid \delta_{t}} \bigsqcup_{M^{\prime} \|\left(t c_{\chi}\right)^{-1} N} l \cdot \mathcal{L}_{N, w_{M^{\prime}}\left(\delta_{t} / l\right), t c_{\chi} /\left(t c_{\chi}, l\right), 1}^{0}\left(\Delta_{|D|, t} / l^{2}\right) \tag{64}
\end{equation*}
$$

By Lemma 2.7, both mappings $[a, b, c] \mapsto[a, b, c]$ and $\tau:[a, b, c] \mapsto[a / p, b, p c]$ induce two bijections

$$
\begin{equation*}
\mathcal{L}^{(p)} / \Gamma_{0}(N p) \hookrightarrow \mathcal{L}_{t c_{\chi} N}\left(\Delta_{|D|, t}\right) / \Gamma_{0}(N) \text { and } \mathcal{L}_{p} / \Gamma_{0}(N p) \hookrightarrow \mathcal{L}_{t c_{\chi} N}\left(\Delta_{|D|, t}\right) / \Gamma_{0}(N) . \tag{65}
\end{equation*}
$$

Via two bijections 65] induced by $[a, b, c] \mapsto[a, b, c]$, we have

$$
\begin{equation*}
\sum_{Q \in \mathcal{L}^{(p)} / \Gamma_{0}(N p)} I_{Q}(f)=\sum_{Q \in \mathcal{L}_{p} / \Gamma_{0}(N p)} I_{Q}(f)=\gamma_{k, \chi, D}^{N}(f ;|D|, t) \tag{66}
\end{equation*}
$$

and by (62), we have

$$
\begin{equation*}
\gamma_{k, \chi, D}^{N p}(f ;|D|, t)=2 \cdot \gamma_{k, \chi, D}^{N}(f ;|D|, t) \tag{67}
\end{equation*}
$$

Via two bijections 65 induced by $\tau:[a, b, c] \mapsto[a / p, b, p c]$, we see that both $\sum_{Q \in \mathcal{L}^{(p)} / \Gamma_{0}(N p)} I_{Q}\left(f \mid V_{p}\right)$ and $\sum_{Q \in \mathcal{L}_{p} / \Gamma_{0}(N p)} I_{Q}\left(f \mid \nabla_{p}\right)$ coincide with

$$
\begin{equation*}
\sum_{Q \in \mathcal{L}_{t c_{\chi} N}\left(\Delta_{t}\right) / \Gamma_{0}(N)} I_{\tau^{-1}(Q)}\left(f \mid V_{p}\right) \tag{68}
\end{equation*}
$$

Here, by [9, Proposition 1 (Multiplicativity) and (Explicit formula)], we have $\omega_{D}\left(\tau^{-1}(Q)\right)=\chi_{D}(p) \omega_{D}(Q)$ and by a simple calculation, we have

$$
\begin{align*}
\chi_{0}\left(\tau^{-1}(Q)\right) & =\chi^{-1}(p) \chi_{0}(Q) \tag{69}\\
\int_{C_{\tau^{-1}(Q)}} f(p z) \tau^{-1}(Q)(z, 1)^{k} d z & =p^{-k-1} \int_{C_{Q}} f(z) Q(z, 1)^{k} d z \tag{70}
\end{align*}
$$

Indeed, we see that the last equation as follows: Put $[a, b, c]:=Q$. Then

$$
\begin{aligned}
\int_{C_{\tau^{-1}(Q)}} f(p z) \tau^{-1}(Q)(z, 1)^{k} d z & =\int_{\omega_{\tau-1}(Q)}^{\omega_{\tau}^{\prime}(Q)} f(p z)\left(p a z^{2}+b z+c / p\right)^{k} d z \\
& =p^{-k} \int_{p^{-1} \omega_{Q}}^{p^{-1} \omega_{Q}^{\prime}} f(p z)\left(a(p z)^{2}+b(p z)+c\right)^{k} d z \\
& =p^{-k} \int_{\omega_{Q}}^{\omega_{Q}^{\prime}} f(z)\left(a z^{2}+b z+c\right)^{k} p^{-1} d z=p^{-k-1} \int_{C_{Q}} f(z) Q(z, 1)^{k} d z
\end{aligned}
$$

where at the second equation from the bottom, we have made use of the transformation law with respect to $z \mapsto p^{-1} z$. We thus have $I_{\tau^{-1}(Q)}\left(f \mid V_{p}\right)=\chi_{D} \chi^{-1}(p) p^{-k-1} I_{Q}(f)$, and hence 68 coincides with

$$
\begin{equation*}
\chi_{D} \chi^{-1}(p) p^{-k-1} \gamma_{k, \chi, D}^{N}(f ;|D|, t) \tag{71}
\end{equation*}
$$

By (63), we have

$$
\begin{equation*}
\gamma_{k, \chi, D}^{N p}\left(f\left|V_{p} ;|D|, t\right)=2 \cdot \chi_{D} \chi^{-1}(p) p^{-k-1} \gamma_{k, \chi, D}^{N}(f ;|D|, t)\right. \tag{72}
\end{equation*}
$$

From (57), 67) and (72), we have

$$
\begin{align*}
a & =\sum_{t \mid c_{\chi}^{-1} N} \mu \chi_{D} \chi^{-1}(t) t^{-k-1} 2\left(1-\chi_{D} \chi^{-1}(p) p^{-k-1} \beta\right) \gamma_{k, \chi, D}^{N}(f ;|D|, t) \\
& =2\left(1-\chi_{D} \chi^{-1}(p) p^{-k-1} \beta\right) \gamma_{k, \chi, D}^{N}(f ;|D|, 1) \tag{73}
\end{align*}
$$

where the last equation is due to 24 .

3. Cohomological interpretation of the D-th Shintani lifting

In this section, we will construct the cohomological D-th Shintani lifting $\Theta_{k, \chi, D}^{N p}$ satisfying the following commutative diagram:

where all arrows are Hecke equivariant \mathbb{C}-homomorphisms and we concentrate on the minus parts because of
$\Theta_{k, \chi, D}^{N p}\left(\operatorname{Symb}_{\Gamma_{0}(N p)}\left(L\left(2 k, \chi^{2} ; \mathbb{C}_{p}\right)\right)^{+}\right)=0$.

3.1. Modular symbols and the Eichler-Shimura isomorphism

Let Δ_{0} be a subsemigroup of $\mathrm{M}_{2}(\mathbb{Z}) \cap \mathrm{GL}_{2}(\mathbb{Q})$ containing $\Gamma_{0}(M)$. Let $\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$ be the group of divisors of degree 0 supported on the rational cusps $\mathbb{P}^{1}(\mathbb{Q})=\mathbb{Q} \cup\{i \infty\}$ of the complex upper half plane \mathfrak{H}. We let Δ_{0} act on \mathfrak{H} by fractional linear transformations, i.e.,

$$
\gamma z:=\left\{\begin{array}{l}
(a z+b)(c z+d)^{-1} \text { if } \operatorname{det}(\gamma)>0, \tag{74}\\
(a \bar{z}+b)(c \bar{z}+d)^{-1} \text { if } \operatorname{det}(\gamma)<0,
\end{array} \quad\left(\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), z \in \mathfrak{H}\right)\right.
$$

This induces a natural action of Δ_{0} on $\mathfrak{H}^{*}:=\mathfrak{H} \cup \mathbb{P}^{1}(\mathbb{Q})$ and $\mathbb{P}^{1}(\mathbb{Q})$. Then Δ_{0} acts on $\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$ by linear fractional transformations. Let R be a commutative ring and E a left $R\left[\Delta_{0}\right]$-module. We let $\gamma \in \Delta_{0}$ acts on $\Phi \in \operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right), E\right)$ by

$$
\begin{equation*}
(\Phi \mid \gamma)(D):=\gamma \Phi(\gamma D) \tag{75}
\end{equation*}
$$

Then the abstract Hecke algebra $R\left[\Gamma_{0}(M) \backslash \Delta_{0} / \Gamma_{0}(M)\right]$ with respect to the Hecke pair $\left(\Gamma_{0}(M), \Delta_{0}\right)$ acts on the group of E-valued modular symbols over $\Gamma_{0}(M)$:

$$
\begin{equation*}
\operatorname{Symb}_{\Gamma_{0}(M)}(E):=\operatorname{Hom}_{\mathbb{Z}}\left(\operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right), E\right)^{\Gamma_{0}(M)} \tag{76}
\end{equation*}
$$

Let \tilde{E} be the locally constant sheaf on the open modular curve $Y:=\Gamma_{0}(M) \backslash \mathfrak{H}$ attached to E. Assume that

$$
\begin{equation*}
\text { the orders of the torsion elements of } \Gamma_{0}(M) \text { act invertibly on } E \text {. } \tag{77}
\end{equation*}
$$

Then by [3, Proposition 4.2], there exists a Hecke equivariant canonical isomorphism

$$
\begin{equation*}
H_{c}^{1}(Y, \tilde{E}) \xrightarrow{\sim} \operatorname{Symb}_{\Gamma_{0}(M)}(E) . \tag{78}
\end{equation*}
$$

Throughout the paper, we will identify the group of compactly supported cohomology classes with the group of modular symbols under the assumption that 77). Note that 77) holds if either E is a vector space over a field of characteristic $0, E$ is a \mathbb{Z}_{p}-module with $p \geq 5$, or $\Gamma_{0}(M)$ is torsion-free. Fix a point $x_{0} \in \mathbb{P}^{1}(\mathbb{Q})$. The natural map $\operatorname{Symb}_{\Gamma_{0}(M)}(E) \rightarrow H^{1}\left(\Gamma_{0}(M), E\right)$ sends a modular symbol Φ to the cohomology class represented by the 1-cocycle $\gamma \mapsto \Phi\left(\left\{\gamma x_{0}\right\}-\left\{x_{0}\right\}\right)$. This map yields a Hecke equivariant epimorphism

$$
\begin{equation*}
\operatorname{Symb}_{\Gamma_{0}(M)}(E) \rightarrow H_{p}^{1}\left(\Gamma_{0}(M), E\right) \tag{79}
\end{equation*}
$$

The matrix $\iota:=\operatorname{diag}(1,-1)$ induces natural involutions on one of the above cohomology groups H, and each of cohomology groups H is decomposed into \pm-eigenmodules $H=H^{+} \oplus H^{-}$if 2 acts invertibly on the coefficient module of H. Indeed, each cohomology class Φ decomposes as $\Phi=\Phi^{+}+\Phi^{-}$, where $\Phi^{ \pm}:=2^{-1}(\Phi \pm \Phi \mid \iota)$. For a non-negative integer n, let $L(n, R)$ be the R-module of homogeneous polynomials in (X, Y) of degree n with coefficients in R. Let ε be an R-valued Dirichlet character modulo M. We denote by $L(n, \varepsilon ; R)$ the $R\left[\Gamma_{0}(M)\right]$-module $L(n, R)$ endowed with the ε-twisted action, i.e., for $\gamma \in \Gamma_{0}(M)$ and $P(X, Y) \in L(n, \varepsilon ; R)$,

$$
\begin{equation*}
(\gamma P)(X, Y)=\varepsilon(\gamma) P\left((X, Y)^{t} \gamma\right) \tag{80}
\end{equation*}
$$

where $\varepsilon(\gamma)$ is the value of ε at the lower right entry of γ. Suppose that n ! is invertible in R. We define a pairing $[]:, L(n, R) \times L(n, R) \rightarrow R$ by

$$
\begin{equation*}
\left[\sum_{i=0}^{n} a_{j} X^{n-i} Y^{j}, \sum_{i=0}^{n} b_{i} X^{n-i} Y^{i}\right]:=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}^{-1} a_{i} b_{n-i} \tag{81}
\end{equation*}
$$

We use the following two properties later:

$$
\begin{align*}
{\left[(a X-b Y)^{n}, P(X, Y)\right] } & =(-1)^{n} P(b, a) \tag{82}\\
{[\gamma P, \gamma Q] } & =\operatorname{det} \gamma^{n}[P, Q] \tag{83}
\end{align*}
$$

for $a, b \in R, P, Q \in L(n, R)$ and $\gamma \in \mathrm{M}_{2}(R)$. If K is a field of characteristic zero, then by the Manin-Drinfeld principle there exists a unique Hecke equivariant section

$$
\begin{equation*}
s_{k, \varepsilon}: H_{p}^{1}\left(\Gamma_{0}(M), L(k, \varepsilon ; K)\right) \hookrightarrow \operatorname{Symb}_{\Gamma_{0}(M)}(L(k, \varepsilon ; K)) \tag{84}
\end{equation*}
$$

of the surjection 779 . For each cusp form $f \in S_{k+2}(M, \varepsilon)$, we define the $L(k, \varepsilon ; \mathbb{C})$-valued differential form on \mathfrak{H} :

$$
\begin{equation*}
\omega_{f}:=f(z)(X-z Y)^{k} d z \tag{85}
\end{equation*}
$$

Fix a point $z_{0} \in \mathfrak{H}^{*}$. We may attach a cohomology class $\operatorname{ES}_{k}(f) \in H_{p}^{1}\left(\Gamma_{0}(M), L(k, \varepsilon ; \mathbb{C})\right)$ defined by

$$
\begin{equation*}
\operatorname{ES}_{k}(f)(\gamma):=\int_{z_{0}}^{\gamma z_{0}} \omega_{f} \tag{86}
\end{equation*}
$$

for each $\gamma \in \Gamma_{0}(M)$. The integral is independent of the choice of the point z_{0}. For either choice of sign \pm, we have a Hecke equivariant isomorphism

$$
\begin{equation*}
\mathrm{ES}_{k}^{ \pm}: S_{k+2}(M, \varepsilon) \xrightarrow{\sim} H_{p}^{1}\left(\Gamma_{0}(M), L(k, \varepsilon ; \mathbb{C})\right)^{ \pm} ; f \mapsto \mathrm{ES}_{k}^{ \pm}(f):=\mathrm{ES}_{k}(f)^{ \pm} \tag{87}
\end{equation*}
$$

The additive map

$$
\begin{equation*}
\Phi_{f}: \operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right) \rightarrow L(k, \varepsilon ; \mathbb{C}) ;\left\{c_{2}\right\}-\left\{c_{1}\right\} \mapsto \int_{c_{1}}^{c_{2}} \omega_{f} \tag{88}
\end{equation*}
$$

defines a modular symbol in $\operatorname{Symb}_{\Gamma_{0}(M)}(L(k, \varepsilon ; \mathbb{C}))$. Then $\mathrm{ES}_{k}^{ \pm}(f)$ is the image of Φ_{f} under 79. Moreover, the map

$$
\begin{equation*}
S_{k+2}(M, \varepsilon) \rightarrow \operatorname{Symb}_{\Gamma_{0}(M)}(L(k, \varepsilon ; \mathbb{C})) ; f \mapsto \Phi_{f} \tag{89}
\end{equation*}
$$

is Hecke equivariant. Hence, by the Hecke equivariance of the Eichler-Shimura isomorphism (87), we see that for either choice of sign \pm,

$$
\begin{equation*}
s_{k, \varepsilon}\left(\mathrm{ES}_{k}^{ \pm}(f)\right)=\Phi_{f}^{ \pm} \tag{90}
\end{equation*}
$$

3.2. The cohomological D-th Shintani lifting

Let k be a non-negative integer, M an odd positive integer, χ a Dirichlet character modulo M, and D a fundamental discriminant with $\chi(-1)(-1)^{k+1} D>0$. For each $Q \in \mathcal{L}_{M}(\Delta)$ with a positive integer Δ with $\Delta \equiv 0,1(\bmod 4)$, let $\partial C_{Q} \in \operatorname{Div}^{0}\left(\mathbb{P}^{1}(\mathbb{Q})\right)$ be the boundary of C_{Q} given by

$$
\begin{equation*}
\partial C_{Q}:=\left\{\omega_{Q}^{\prime}\right\}-\left\{\omega_{Q}\right\} \tag{91}
\end{equation*}
$$

where recall that $\left(\omega_{Q}, \omega_{Q}^{\prime}\right)$ is defined by 17 and that C_{Q} is the geodesic path oriented from ω_{Q} to ω_{Q}^{\prime}. Let R be a commutative $\mathbb{Z}[\chi]\left[\chi(-1)^{1 / 2}|D|^{1 / 2} G\left(\chi_{0}^{-1}\right)\right]$-algebra such that $(2 k)$! is invertible in R.

Definition 3.1. 1. For each $\Phi \in \operatorname{Symb}_{\Gamma_{0}(M)}\left(L\left(2 k, \chi^{2} ; R\right)\right)$ and each $Q \in \mathcal{L}_{M}(\Delta)$, we set

$$
\begin{align*}
& J_{k, \chi}(\Phi, Q):=\chi_{0}(Q) \cdot\left[\Phi\left(\partial C_{Q}\right), Q^{k}\right] \in R, \tag{92}\\
& \gamma_{k, \chi, D}^{M}(\Phi ; n, t):=\sum_{Q \in \mathcal{L}_{t c_{\chi} M}\left(\Delta_{n, t}\right) / \Gamma_{0}(M)} \omega_{D}(Q) J_{k, \chi}(\Phi, Q) \tag{93}
\end{align*}
$$

2. For $\Phi \in \operatorname{Symb}_{\Gamma_{0}(M)}\left(L\left(2 k, \chi^{2} ; R\right)\right)$, we define the n-th coefficient of $\Theta_{k, \chi, D}^{M}(\Phi) \in R[[q]]$ by

$$
\begin{equation*}
a_{n}\left(\Theta_{k, \chi, D}^{M}(\Phi)\right):=c_{k, \chi, D} \sum_{t \mid c_{\chi}^{-1} M} \mu \chi_{D} \chi_{0}^{-1}(t) t^{-k-1} \gamma_{k, \chi, D}^{M}(\Phi ; n, t) \tag{94}
\end{equation*}
$$

if $\chi(-1)(-1)^{k+1} n \equiv 0,1(\bmod 4)$ and $a_{n}\left(\Theta_{k, \chi, D}^{M}(\Phi)\right):=0$ otherwise. Here, recall that $c_{k, \chi, D}$ and $\Delta_{n, t}$ is defined by 20) and 21), respectively.

Proposition 3.2. 1. For any $\Phi \in \operatorname{Symb}_{\Gamma_{0}(M)}\left(L\left(2 k, \chi^{2} ; R\right)\right)$, we have

$$
\begin{equation*}
\Theta_{k, \chi, D}^{M}(\Phi \mid \iota)=-\Theta_{k, \chi, D}^{M}(\Phi) \tag{95}
\end{equation*}
$$

2. For any $f \in S_{2 k+2}\left(M, \chi^{2}\right)$, we have

$$
\begin{equation*}
\Theta_{k, \chi, D}^{M}\left(\Phi_{f}\right)=\Theta_{k, \chi, D}^{M}\left(\Phi_{f}^{-}\right)=\theta_{k, \chi, D}^{M}(f) \tag{96}
\end{equation*}
$$

3. If K is a field of characteristic zero and Φ belongs to the image of $s_{2 k, \chi^{2}}$, then

$$
\begin{equation*}
\Theta_{k, \chi, D}^{M}(\Phi) \in S_{k+3 / 2}^{+}(4 M, \tilde{\chi} ; K) \tag{97}
\end{equation*}
$$

Proof. The proof is essentially the same as [29, Proposition 4.3.3].
Let $f \in S_{2 k+2}\left(M, \chi^{2}\right)$ be a Hecke eigenform, K the p-adic completion of the field obtained by adjoining the values of χ and $\chi(-1)^{1 / 2}|D|^{1 / 2} G\left(\chi_{0}^{-1}\right)$ to the Hecke field \mathbb{Q}_{f}, and λ_{f} the \mathcal{O}_{K}-algebra homomorphism corresponding to f. By [13, Proposition 3.3], the eigenmodule $\operatorname{Symb}_{\Gamma_{0}(M)}\left(L\left(k, \chi^{2} ; \mathcal{O}_{K}\right)\right)^{ \pm}\left[\lambda_{f}\right]$ is free of rank one over \mathcal{O}_{K}. Let $\Delta_{f}^{ \pm}$be a generator of $\operatorname{Symb}_{\Gamma_{0}(M)}\left(L\left(k, \chi^{2} ; \mathcal{O}_{K}\right)\right)^{ \pm}\left[\lambda_{f}\right]$. This fact implies that there exists $\Omega(f)^{ \pm} \in \mathbb{C}_{p}^{\times}$such that

$$
\begin{equation*}
\Delta_{f}^{ \pm}=\left(\Omega(f)^{ \pm}\right)^{-1} \cdot \Phi_{f}^{ \pm} \in \operatorname{Symb}_{\Gamma_{0}(M)}\left(L\left(k, \chi^{2} ; \mathcal{O}_{K}\right)\right)^{ \pm}\left[\lambda_{f}\right] \tag{98}
\end{equation*}
$$

Theorem 3.3. Let $f \in S_{2 k+2}\left(N p, \chi^{2}\right)$ be a Hecke eigenform with $\chi_{D} \chi(-1)(-1)^{k}=-1$.Then,

$$
\begin{equation*}
\left(\Omega(f)^{-}\right)^{-1} \cdot \theta_{k, \chi, D}^{N p}(f)=\Theta_{k, \chi, D}\left(\Delta_{f}^{-}\right) \in S_{k+3 / 2}^{+}\left(4 N p, \tilde{\chi} ; p^{-1} \mathcal{O}_{K}\right) \tag{99}
\end{equation*}
$$

Proof. Since $\Delta_{f}^{-} \in \operatorname{Symb}_{\Gamma_{0}(N p)}\left(L\left(k, \varepsilon ; \mathcal{O}_{K}\right)\right)^{-}\left[\lambda_{f}\right]$, we have

$$
\begin{equation*}
\chi_{0}(Q) \cdot\left[\Delta_{f}^{-}\left(\partial C_{Q}\right), Q^{k}\right] \in \mathcal{O}_{K} . \tag{100}
\end{equation*}
$$

The assertion follows from Proposition 3.2
For a Hecke eigenform $f \in S_{2 k+2}\left(N p, \chi^{2}\right)$ with $\chi_{D} \chi(-1)(-1)^{k}=-1$. We fix, once and for all, the complex period $\Omega(f)^{-}$as 98 and define

$$
\begin{equation*}
\theta_{D}^{\operatorname{alg} g}(f):=\left(\Omega(f)^{-}\right)^{-1} p \cdot \theta_{k, \chi, D}^{N p}(f) \in \mathcal{O}_{K}[[q]] . \tag{101}
\end{equation*}
$$

4. Rigid analytic ingredients

Let K be a complete discrete valuation field. The weight space \mathcal{W} attached to $\mathcal{O}_{K} \llbracket \mathbb{Z}_{p}^{\times} \rrbracket$ is the rigid analytic variety whose \mathbb{C}_{p}-valued points are given by

$$
\begin{equation*}
\operatorname{Hom}^{\text {cont }}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right) \cong \operatorname{Hom}_{\mathcal{O}_{K}-\operatorname{alg}}^{\text {cont }}\left(\mathcal{O}_{K} \llbracket \mathbb{Z}_{p}^{\times} \rrbracket, \mathbb{C}_{p}\right) . \tag{102}
\end{equation*}
$$

For a K-Banach algebra R and an R-valued point $k \in \mathcal{W}(R)$, we will use a notation t^{k} instead of $k(t)$ for $t \in \mathbb{Z}_{p}^{\times}$. For a K-rigid analytic variety X, we denote by $A(X)$ the ring of rigid analytic functions on X and $A^{\circ}(X)$ the subring consisting of elements that are power bounded with respect to the supremum semi-norm || (see [4, Definition 6.2.1/2]). By [4, Proposition 6.2.3/1], we have $A^{\circ}(X)=\{f \in A(X)| | f \mid \leq 1\}$.

4.1. Coleman families

In this subsection, we recall Coleman families given in [7] following [33]. Let K be a complete subfield of \mathbb{C}_{p} and $f \in S_{k_{0}}(N p, \varepsilon ; K)_{\alpha}$ a Hecke eigenform with $k_{0}-1>\alpha$. Assume that f is (p)-new, i.e., the primitive form attached to f is a newform of level either N or $N p$. We denote by ε_{p} the restriction of ε to $(\mathbb{Z} / p \mathbb{Z})^{\times}$. Then there exists an integer $0 \leq i \leq p-1$ such that we have $\varepsilon_{p}=\tau^{i-k_{0}}$, where $\tau:(\mathbb{Z} / p \mathbb{Z})^{\times} \hookrightarrow \mathbb{Z}_{p}^{\times}$is the Teichmüller character. Let $T(n)$ be a Hecke operator on overconvergent forms defined in [7] Lemma B5.1 and p.464] for each positive integer n. Note that $T(n)$ coincides with the usual Hecke operator T_{n} on classical modular forms Let $S(N, i)$ be the K-vector space of families of cuspidal overconvergent forms of tame level N and type i defined in [7. Section B4]. Then by [7, Theorem B3.4], there exists a sufficiently large integer $m>(2-p) /(p-1)$ depending on α such that we can obtain a certain direct summand $S_{B}(N, i)_{\alpha}$ of the restriction of $S(N, i)$ on the affinoid disc $B=B_{K}\left[k_{0}, p^{-m}\right]$ of radius p^{-m} around k_{0} defined over K, which interpolates the K-vector spaces $S_{k}^{\mathrm{cl}}\left(\omega^{i-k} ; K\right)_{\alpha}$ of classical cusp forms of level $N p,(\mathbb{Z} / p \mathbb{Z})^{\times}$-character τ^{i-k} and $T(p)$-slope α with varying
integral weights $k \in B(\mathbb{Z}):=B\left(\mathbb{C}_{p}\right) \cap \mathbb{Z}=\left\{k \in \mathbb{Z} \mid k \equiv k_{0}\left(\bmod p^{m}\right)\right\}$ greater than $\alpha+1$. Here the classicality of overconvergent forms of small $T(p)$-slope is given by [6, Theorem 6.1]. (Note that p^{-m} and $S_{B}(N, i)_{\alpha}$ are written as r and H in [7, the subsection " R-families" on the page 465], respectively.) The set of \mathbb{C}_{p}-valued points of B is given by

$$
\begin{equation*}
B\left(\mathbb{C}_{p}\right)=\left\{s \in \mathcal{O}_{\mathbb{C}_{p}}| | k_{0}-\left.s\right|_{p} \leq p^{-m}\right\} \tag{103}
\end{equation*}
$$

The K-affinoid algebra $A(B)$ attached to B is the K-algebra $K\left\langle\left(X-k_{0}\right) / p^{m}\right\rangle$ of strictly convergent power series in $\left(X-k_{0}\right) / p^{m}$ with the indeterminate X (see [4, Proposition 6.1.4/4]). By [7, Theorem B3.4], we know that

$$
\begin{equation*}
\operatorname{dim}_{K}\left(S_{k_{0}}^{\mathrm{cl}}\left(\tau^{i-k_{0}} ; K\right)_{\alpha}\right)=\operatorname{dim}_{K}\left(S_{k}^{\mathrm{cl}}\left(\tau^{i-k} ; K\right)_{\alpha}\right)=: d \tag{104}
\end{equation*}
$$

for all k in

$$
\begin{equation*}
W_{B}:=\left\{k \in B(\mathbb{Z}) \mid k \equiv k_{0}(\bmod p-1), k>\alpha+1\right\} \tag{105}
\end{equation*}
$$

Then we see that $S_{B}(N, i)_{\alpha}$ is a projective $A(B)$-module of rank d by [7, Theorem A4.5], and for any $k \in W_{B}$, we have the specialization map

$$
\begin{equation*}
\operatorname{sp}_{k}: S_{B}(N, i)_{\alpha} \rightarrow S_{B}(N, i)_{\alpha} \otimes_{A(B)} A(B) / P_{k} \xrightarrow{\sim} S_{k}^{\mathrm{cl}}\left(\tau^{i-k} ; K\right)_{\alpha}, \tag{106}
\end{equation*}
$$

where $P_{k}:=(X-k)$ is the maximal ideal of $A(B)$. For any $k \in W_{B}$, we have $\tau^{i-k}=\tau^{i-k_{0}}=\varepsilon_{p}$. The (p)-new subspace $S_{B}^{(p) \text {-new }}(N, i)_{\alpha}$ of $S_{B}(N, i)_{\alpha}$ is defined as the intersection of kernels of all the degeneracy trace maps from level $\Gamma_{1}(N p)$ to level $\Gamma_{1}\left(N^{\prime} p\right)$ for all positive divisors N^{\prime} of N with $N^{\prime} \neq N$. For any $k \in W_{B}$, we define the (p)-new subspace $S_{k}^{(p) \text {-new }}\left(\tau^{i-k} ; K\right)_{\alpha}$ of $S_{k}^{\text {cl }}\left(\tau^{i-k} ; K\right)_{\alpha}$ as well. Then, we have the canonical isomorphism

$$
\begin{equation*}
S_{B}^{(p) \text {-new }}(N, i)_{\alpha} \otimes_{A(B)} A(B) / P_{k} \cong S_{k}^{(p) \text {-new }}\left(\tau^{i-k} ; K\right)_{\alpha} \tag{107}
\end{equation*}
$$

of finite dimensional K-vector spaces (see [33, Proposition 2.1]).
Definition 4.1. We define the subspace $S_{k}^{\mathrm{ss}}(K)$ of $S_{k}^{(p) \text {-new }}\left(\mathbb{1}_{p} ; K\right)_{\alpha}$ as the subspaces spanned by primitive forms of level $N p$ and character ε and old forms g and $g \mid V_{p}$ coming from primitive forms g of level N and character ε such that the characteristic polynomial of $T(p)$ acting on the subspaces spanned by g and $g \mid V_{p}$ has no double roots (see [33, Definition 2.2]).

Assume that $i \equiv k_{0}(\bmod p-1)$. By 107 , we have the specialization map

$$
\begin{equation*}
\operatorname{sp}_{k}: S_{B}^{(p) \text {-new }}(N, i)_{\alpha} \rightarrow S_{B}^{(p) \text {-new }}(N, i)_{\alpha} \otimes_{A(B)} A(B) / P_{k} \xrightarrow{\sim} S_{k}^{(p) \text {-new }}\left(\mathbb{1}_{p} ; K\right)_{\alpha} \tag{108}
\end{equation*}
$$

for any $k \in W_{B}$. Then we put

$$
\begin{equation*}
S_{B}^{\mathrm{ss}}:=\operatorname{sp}_{k_{0}}^{-1}\left(S_{k_{0}}^{\mathrm{ss}}(K)\right) \subset S_{B}^{(p) \text {-new }}(N, i)_{\alpha} \tag{109}
\end{equation*}
$$

Definition 4.2. Let \mathcal{H}_{B} be the Hecke algebra defined as the $A(B)$-subalgebra of $\operatorname{End}_{A(B)}\left(S_{B}(N, i)_{\alpha}\right)$ generated by Hecke operators $T(n)$ with all $n \geq 1$. We denote by $\mathcal{H}_{B}^{(p) \text {-new }}$ the image of the natural homomorphism

$$
\begin{equation*}
\mathcal{H}_{B} \rightarrow \operatorname{End}_{A(B)}\left(S_{B}^{(p) \text {-new }}(N, i)_{\alpha}\right) \tag{110}
\end{equation*}
$$

given by the restricting the Hecke action. Since the $A(B)$-submodule $S_{B}^{\text {ss }}$ defined by 109 is stable under the action of $\mathcal{H}_{B}^{(p) \text {-new }}$, we can take the image \mathfrak{h}_{B} of the natural homomorphism

$$
\begin{equation*}
\mathcal{H}_{B}^{(p) \text {-new }} \rightarrow \operatorname{End}_{A(B)}\left(S_{B}^{\mathrm{ss}}\right) \tag{111}
\end{equation*}
$$

given by restricting the Hecke action.

Then \mathfrak{h}_{B} is a K-affinoid algebra which is finite over $A(B)$. We specialize \mathfrak{h}_{B} at the closed point k_{0} of B as $\mathfrak{h}_{B} \otimes_{A(B)} A(B) / P_{k_{0}}$ and take the image $\mathfrak{h}_{k_{0}}(K)$ of the natural homomorphism

$$
\begin{equation*}
\mathfrak{h}_{B} \otimes_{A(B)} A(B) / P_{k_{0}} \rightarrow \operatorname{End}_{K}\left(\operatorname{sp}_{k_{0}}\left(S_{B}^{\mathrm{ss}}\right)\right)=\operatorname{End}_{K}\left(S_{k_{0}}^{\mathrm{ss}}(K)\right) \tag{112}
\end{equation*}
$$

Then the Hecke algebra $\mathfrak{h}_{k_{0}}(K)$ is a commutative semi-simple K-algebra by the theory of newforms and old forms (see [19, Theorem 1]). By the definition of \mathfrak{h}_{B} and $\mathfrak{h}_{k_{0}}(K)$, we have the natural surjective $A(B)$-algebra homomorphism

$$
\begin{equation*}
\mathfrak{s p}_{k_{0}}: \mathfrak{h}_{B} \rightarrow \mathfrak{h}_{k_{0}}(K) . \tag{113}
\end{equation*}
$$

Let $\lambda_{1}, \ldots, \lambda_{r}: \mathfrak{h}_{k_{0}}(K) \rightarrow K$ be the K-algebra homomorphisms which correspond to all Hekce eigenforms in $S_{k_{0}}^{\mathrm{ss}}(K)$ via the duality between classical Hecke eigenforms and K-algebra homomorphisms from a classical Hecke algebra into K (see [11, Proposition 3.21]) with some positive integer $r \leq d$. Let $\mathfrak{h}_{B}^{\text {red }}:=\mathfrak{h}_{B} / \sqrt{(0)}$ be the reduction of \mathfrak{h}_{B}. Since $\mathfrak{h}_{k_{0}}(K)$ is reduced, we see that 113$)$ factors through the surjective $A(B)$-algebra homomorphism $\mathfrak{s p}_{k_{0}}: \mathfrak{h}_{B}^{\text {red }} \rightarrow \mathfrak{h}_{k_{0}}(K)$.

Theorem 4.3 ([33, Theorem 2.2]). We have the following commutative diagram of $A(B)$-algebras

after shrinking the disk B around the center k_{0} if necessary.
Let $f \in S_{k_{0}}^{\text {new }}(N, \varepsilon)_{\alpha}$ be a primitive form with $k_{0}-1>\alpha$. Assume that $\alpha \neq\left(k_{0}-1\right) / 2$. Then the characteristic polynomial of $T(p)$ acting on the subspace spanned by f and $f \mid V_{p}$ has no double roots. We can take the root $\alpha_{p}(f)$ of the polynomial satisfying $\operatorname{ord}_{p}\left(\alpha_{p}(f)\right)=\alpha$. The p-stabilization f^{*} of f is the eigenvector with eigenvalue $\alpha_{p}(f)$ of T_{p} on the subspace given by

$$
\begin{equation*}
f^{*}:=f-\varepsilon(p) p^{k_{0}-1} \alpha_{p}(f)^{-1} \cdot f \mid V_{p} \tag{115}
\end{equation*}
$$

The p-stabilization f^{*} is the Hecke eigenform of level $N p$ with the same eigenvalues as f outside p and $T(p)$ 5 eigenvalue $a_{p}\left(f^{*}\right)=\alpha_{p}(f)$. Let K be the p-adic completion of the field $\mathbb{Q}_{f}\left(\alpha_{p}(f)\right)$ obtained by adjoining $\alpha_{p}(f)$ to the Hecke field \mathbb{Q}_{f} of f. Then $f^{*} \in S_{k_{0}}^{\text {ss }}(K)$. Let $\lambda_{f^{*}}: \mathfrak{h}_{k_{0}}(K) \rightarrow K$ be the K-algebra homomorphism corresponding to f^{*} via the duality and $A_{f^{*}}: \mathfrak{h}_{B}^{\text {red }} \rightarrow A(B)$ the $A(B)$-algebra homomorphism whose specialization at k_{0} coincides with $\lambda_{f^{*}}\left(\mathfrak{s p}_{k_{0}}(T)\right)$ for any $T \in \mathfrak{h}_{B}^{\text {red }}$, obtained in the theorem above. For all positive integers n, we put $a_{n}(\mathbf{f}):=A_{f^{*}}(T(n))$ for short. Then the formal power series $\mathbf{f}=\sum_{n \geq 1} a_{n}(\mathbf{f}) q^{n} \in A(B)[[q]]$ interpolates

Theorem 4.4 ([33, Corollary 2.3]). Let $f \in S_{k_{0}}^{\text {new }}(N, \varepsilon)_{\alpha}$ be a primitive form with $k_{0}-1>\alpha \neq\left(k_{0}-1\right) / 2$, and K a complete subfield of \mathbb{C}_{p} containing the p-adic completion of the Hecke field $\mathbb{Q}_{f} *$. Then there exist a K-affinoid disk $B_{f}=B_{K}\left[k_{0}, p^{-m_{f}}\right]$ with a positive integer m_{f} and a formal power series $\mathbf{f} \in A^{\circ}\left(B_{f}\right)[[q]]$ such that for any $k \in W_{f}:=B_{f}(\mathbb{Z}) \cap W_{B}$ except for at most one (we call this element an exceptional weight), there exists a primitive form $f_{k} \in S_{k}^{\text {new }}\left(N, \varepsilon ; \mathcal{O}_{K}\right)_{\alpha}$ satisfying the following conditions:

1. $\mathbf{f}(k)=f_{k}^{*}$.
2. $\mathbf{f}\left(k_{0}\right)=f^{*}\left(\right.$ i.e., $\left.f_{k_{0}}=f\right)$.
3. $\mathbf{f}\left(k_{1}\right) \in S_{k_{1}}^{\text {new }}(N p, \varepsilon)_{\alpha}$ is primitive if there exists an exceptional weight $k_{1} \in W_{f}$

In particular, then there exists an integer $m_{0} \geq m_{f}$ such that for any integer $r>m_{0}$, we have

$$
\begin{equation*}
f_{k}^{*} \equiv f^{*}\left(\bmod p^{r-m_{0}} \mathcal{O}_{K}\right) \text { if } k \equiv k_{0}\left(\bmod (p-1) p^{r}\right) \tag{116}
\end{equation*}
$$

Remark 4.5. In order to obtain a disk B_{f} in the theorem above, we shrink the disk B if necessary so that the following properties hold:

1. Theorem 4.3 is applicable.
2. the coefficients $a_{n}(\mathbf{f})$ of \mathbf{f} satisfy $\left|a_{n}(\mathbf{f})\right| \leq 1$, i.e., $\mathbf{f} \in A^{\circ}\left(B_{f}\right)$.
3. the specializations $\mathbf{f}(k)$ have the same character ε.

It is possible to shrink B so that we have (2) by [7, the proof of Lemma B5.3] and (3) by [5, Lemma 5.5]. Thus. we may take a disk B^{\prime} as the intersection of disks satisfying (1), (22), and (3).

We refer to \mathbf{f} as a Coleman family passing through f^{*} as well as $\left\{f_{k}^{*}\right\}_{k \in W_{f}}$ obtained in the theorem above for a primitive form f.

4.2. Analytic functions and distributions

Let \mathcal{W}^{*} be the rigid subspace of \mathcal{W} consisting of accessible weights, i.e., weights k such that for any $t \in \mathbb{Z}_{p}^{\times}$, $\left|k(t)^{p-1}-1\right|<p^{-1 /(p-1)}$. Let U be an open K-affinoid subvariety of \mathcal{W}^{*}. We define the universal weight $k_{U} \in \operatorname{Hom}^{\operatorname{cont}}\left(\mathbb{Z}_{p}^{\times}, A^{\circ}(U)^{\times}\right)$by $t^{k_{U}}(x):=t^{x}$ for all $x \in U(K)$. Let R° denote one of the complete regular local Noetherian rings O_{K} and $A^{\circ}(U)$. For $R:=R^{\circ} \hat{\otimes}_{\mathcal{O}_{K}} K$, we let $k_{R} \in \mathcal{W}^{*}(R)$ be an element that requires $k_{R}=k_{U}$ if $R=A(U)$. We denote by $A\left(k_{R} ; R^{\circ}\right)$ the R°-module consisting of functions $f: \mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times} \rightarrow R^{\circ}$ such that for all $t \in \mathbb{Z}_{p}^{\times}$and $(x, y) \in \mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}$, we have $f(t x, t y)=t^{k_{R}} f(x, y)$ and $f(z, 1) \in R^{\circ}\langle z\rangle$. We denote by $A\left(k_{R}, \varepsilon ; R^{\circ}\right)$ the $R^{\circ}\left[\Gamma_{0}(N p)\right]$-module $A\left(k_{R} ; R^{\circ}\right)$ equipped with the ε-twisted action; we let $\gamma \in \Gamma_{0}(N p)$ act on $f \in A\left(k_{R} ; R^{\circ}\right)$ by

$$
\begin{equation*}
(\gamma \cdot f)(x, y)=\varepsilon(\gamma) f\left((x, y)^{t} \gamma\right) \tag{117}
\end{equation*}
$$

where $\varepsilon(\gamma)$ is the value of ε on the lower right entry of γ and we assume that the restriction of k_{U} and ε to $(\mathbb{Z} / p \mathbb{Z})^{\times}$coincide. We set

$$
\begin{equation*}
D\left(k_{R}, \varepsilon ; R^{\circ}\right):=\operatorname{Hom}_{R^{\circ}}^{\text {cont }}\left(A\left(k_{R}, \varepsilon ; R^{\circ}\right), R^{\circ}\right) \tag{118}
\end{equation*}
$$

and endow $D\left(k_{R}, \varepsilon ; R^{\circ}\right)$ with $\Gamma_{0}(N p)$-action by

$$
\begin{equation*}
(\mu \mid \gamma)(f):=\mu(\gamma \cdot f) \tag{119}
\end{equation*}
$$

for $f \in A\left(k_{R}, \varepsilon ; R^{\circ}\right)$. Now we have natural specialization maps

$$
\begin{align*}
A\left(k_{U}, \varepsilon ; A^{\circ}(U)\right) & \rightarrow A\left(k, \varepsilon ; \mathcal{O}_{K}\right) ; f \mapsto f_{k} \tag{120}\\
\eta_{k}: D\left(k_{U}, \varepsilon ; A^{\circ}(U)\right) & \rightarrow D\left(k, \varepsilon ; \mathcal{O}_{K}\right) ; \mu \mapsto \mu_{k} \tag{121}
\end{align*}
$$

where $f_{k}(x, y):=f(x, y)(k)$ and $\mu_{k}(f):=\mu\left(f_{U}\right)(k)$ with $f_{U}(x, y):=y^{k_{U}} f(x / y, 1)$ for $f \in A\left(k, \varepsilon ; \mathcal{O}_{K}\right)$. Let t_{k} be an element of $A^{\circ}(U)$ which vanishes with order 1 at k and nowhere else. Then we have canonical exact sequences of $A^{\circ}(U)\left[\Gamma_{0}(N p)\right]$-modules

$$
\begin{array}{r}
0 \rightarrow A\left(k_{U}, \varepsilon ; A^{\circ}(U)\right) \xrightarrow{t_{k}} A\left(k_{U}, \varepsilon ; A^{\circ}(U)\right) \rightarrow A\left(k, \varepsilon ; \mathcal{O}_{K}\right) \rightarrow 0, \\
0 \rightarrow D\left(k_{U}, \varepsilon ; A^{\circ}(U)\right) \xrightarrow{t_{k}} D\left(k_{U}, \varepsilon ; A^{\circ}(U)\right) \xrightarrow{\eta_{k}} D\left(k, \varepsilon ; \mathcal{O}_{K}\right) \rightarrow 0 \tag{123}
\end{array}
$$

(see [1. Proposition 3.11]). Identifying $L\left(k, \varepsilon ; \mathcal{O}_{K}\right)=\left\langle X^{k}, X^{k-1} Y, \ldots, Y^{k}\right\rangle$ with the $\mathcal{O}_{K}\left[\Gamma_{0}(N p)\right]$-submodule $\mathcal{P}\left(k, \varepsilon ; \mathcal{O}_{K}\right):=\left\langle y^{k}, y^{k-1} x, \ldots, x^{k}\right\rangle$ of $A\left(k, \varepsilon ; \mathcal{O}_{K}\right)$, and dualizing $\mathcal{P}\left(k, \varepsilon ; \mathcal{O}_{K}\right) \subset A\left(k, \varepsilon ; \mathcal{O}_{K}\right)$ give a $K\left[\Gamma_{0}(N p)\right]-$ homomorphism

$$
\begin{equation*}
\rho_{k}: D\left(k, \varepsilon ; \mathcal{O}_{K}\right) \rightarrow L\left(k, \varepsilon ; \mathcal{O}_{K}\right) ; \mu \mapsto \sum_{i=0}^{k} \mu\left(y^{k-i} x^{i}\right) X^{k-i} Y^{i}=\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}}(y X-x Y)^{k} d \mu(x, y) . \tag{124}
\end{equation*}
$$

We define the $A^{\circ}(U)\left[\Gamma_{0}(N p)\right]$-homomorphism ϕ_{k}° as

$$
\begin{equation*}
\phi_{k}^{\circ}: D\left(k_{U}, \varepsilon ; A^{\circ}(\Omega)\right) \xrightarrow{\eta_{k}} D\left(k, \varepsilon ; \mathcal{O}_{K}\right) \xrightarrow{\rho_{k}} L\left(k, \varepsilon ; \mathcal{O}_{K}\right) . \tag{125}
\end{equation*}
$$

We set $A\left(k_{R}, \varepsilon ; R\right):=A\left(k_{R}, \varepsilon ; R^{\circ}\right) \hat{\otimes}_{\mathcal{O}_{K}} K$ and $D\left(k_{R}, \varepsilon ; R\right):=D\left(k_{R}, \varepsilon ; R^{\circ}\right) \hat{\otimes}_{\mathcal{O}_{K}} K$. Finally, we define the $A(U)\left[\Gamma_{0}(N p)\right]$-homomorphism ϕ_{k} by

$$
\begin{equation*}
\phi_{k} ;=\phi_{k}^{\circ} \hat{\otimes}_{\mathcal{O}_{K}} K: D\left(k_{U}, \varepsilon ; A(U)\right) \rightarrow L(k, \varepsilon ; K), \tag{126}
\end{equation*}
$$

4.3. Slope $\leq h$ decompositon

Definition 4.6 ([2, Definition 4.1.1, 4.6.3 and 4.6.1 and Lemma 4.6.4]). Let $K \subset \mathbb{C}_{p}$ be a complete subfield, A a commutative Noetherian K-Banach algebra with norm $|\cdot|_{A}, A^{\mathrm{m}}$ the group of multiplicative units in A with respect to $|\cdot|_{A}$, and H an A-module with $u \in \operatorname{End}_{A}(H)$. For a polynomial $Q \in A[T]$, we denote by

$$
\begin{equation*}
Q^{*}(T):=T^{\operatorname{deg}(Q)} Q(1 / T) . \tag{127}
\end{equation*}
$$

Let $h \in \mathbb{Q}$ and $A[T]_{\leq h}$ the set of polynomials $Q \in A[T]$ such that $Q^{*}(0) \in A^{\mathrm{m}}$ and the slopes of Q are less than or equal to h (see [2] for the definition of slopes of a power series). A slope $\leq h$ decomposition of H with respect to u is an $A[u]$-module decomposition $H=H_{\leq h} \oplus H_{>h}$ such that

1. $H_{\leq h}=\bigcup_{Q \in A[T] \leq h} \operatorname{Ker} Q^{*}(u)$ is finitely generated as an A-module
2. $\left.Q^{*}(u)\right|_{H_{>h}} \in \operatorname{Aut}_{A}\left(H_{>h}\right)$ for any $Q \in A[T]_{\leq h}$.

Theorem 4.7. Let $h \in \mathbb{Q} \geq 0$.

1. For any $\kappa \in \mathcal{W}(K)$, there exists an open K-affinoid subvariety U in \mathcal{W} containing κ such that an $A(U)$ module $\operatorname{Symb}_{\Gamma_{0}(N p)}\left(D\left(k_{U}, \varepsilon ; A(U)\right)\right)^{ \pm}$admits a slope $\leq h$ decomposition with respect to the Hecke operator T_{p}.
2. The following control theorem holds:

$$
\begin{equation*}
\operatorname{Symb}_{\Gamma_{0}(N p)}\left(D\left(k_{U}, \varepsilon ; A(U)\right)\right)_{\leq h}^{ \pm} \otimes_{A(U)} A(U) / P_{k} \cong \operatorname{Symb}_{\Gamma_{0}(N p)}(D(k, \varepsilon ; K))_{\leq h}^{ \pm}, \tag{128}
\end{equation*}
$$

where P_{k} is the maximal ideal of $A(U)$ generated by t_{k}.
3. If $k+1>h$, the epimorphism ρ_{k} (124) induces the $K\left[\Gamma_{0}(N p)\right]$-isomorphism

$$
\begin{equation*}
\operatorname{Symb}_{\Gamma_{0}(N p)}(D(k, \varepsilon ; K))_{\leq h}^{ \pm} \xrightarrow{\sim} \operatorname{Symb}_{\Gamma_{0}(N p)}(L(k, \varepsilon ; K))_{\leq h}^{ \pm} . \tag{129}
\end{equation*}
$$

${ }_{140}$ Remark 4.8. The theorem above was quoted in [23] without proof (see [23, Theorem 4.6] for (1) and [23, Theorem 4.12] for (2) and (3)). For more details, we refer to [2] and [1, Section 3]. In addition, 24] is useful especially for the comparison theorem (3).

5. p-Adic interpolation of the \boldsymbol{D}-th Shintani lifting

Let $f \in S_{k_{0}+2}^{\text {new }}(N, \varepsilon)_{\alpha}$ be a primitive form with $k_{0}+1>\alpha \neq\left(k_{0}+1\right) / 2$, and K the p-adic completion of the field obtained by adjoining $\chi(-1)^{1 / 2}|D|^{1 / 2} G\left(\chi_{0}^{-1}\right)$ and the values of χ to the Hecke field $\mathbb{Q}_{f^{*}}$. By Theorem 4.4 there exists a K-affinoid disk B_{f} around $k_{0}+2$ and a Coleman family $\mathbf{f} \in A^{\circ}\left(B_{f}\right)[[q]]$ passing through f^{*}. By Theorem 4.7(1), there exists an open K-affinoid subvariety U in \mathcal{W}^{*} containing ($k_{0}+2, \mathbb{1}_{p}$) such that an $A(U)$-module $\operatorname{Symb}_{\Gamma_{0}(N p)}\left(D\left(k_{U}, \varepsilon ; A(U)\right)\right)^{ \pm}$admits a slope $\leq \alpha$ decomposition with respect to the Hecke operator T_{p}.

5.1. Overconvergent Hecke eigensymbols

Lemma 5.1. Let K be a complete subfield of \mathbb{C}_{p}. Let $k, n \in \mathcal{O}_{K}$ and $m \in \mathbb{Q} \geq 0$. Then,

$$
\begin{equation*}
\sigma_{n}^{+}: K\left\langle(X-k) / p^{m}\right\rangle \xrightarrow{\sim} K\left\langle(X-(k+n)) / p^{m}\right\rangle ; X \mapsto X-n \tag{130}
\end{equation*}
$$

is an isometric K-algebra isomorphism with respect to the supremum semi-norm. In particular, the pair of σ_{n}^{+} and

$$
\begin{equation*}
a_{\sigma_{n}^{+}}: B_{K}\left[k+n, p^{-m}\right] \xrightarrow{\sim} B_{K}\left[k, p^{-m}\right] ; \mathfrak{m} \mapsto\left(\sigma_{n}^{+}\right)^{-1}(\mathfrak{m}) \tag{131}
\end{equation*}
$$

gives an isomorphism as K-affinoid varieties.
Proof. We put $T_{2}:=K\langle X, Y\rangle$ for short. Let ϕ be the K-algebra endomorphism of T_{2} defined by $\phi(X)=X-n$ and $\phi(Y)=Y$ (see [4, Corollary 5.1.3/5]). Since the endomorphism defined by $X \mapsto X+n$ and $Y \mapsto Y$ gives the inverse of ϕ, we see that $\phi \in \operatorname{Aut}_{K-a l g}\left(T_{2}\right)$. Write \mathfrak{a} for the principal ideal of T_{2} generated by $X-k-p^{m} Y$, 155 and hence $\phi(\mathfrak{a})=\left(X-(k+n)-p^{m} Y\right)$. Then the natural projection $T_{2} \rightarrow T_{2} / \phi(\mathfrak{a})$ composed with ϕ induces the K-algebra isomorphism σ_{n}^{+}by [4, Proposition 6.1.4/4]. Since σ_{n}^{+}is an integral monomorphism, it is isometric by [4, Proposition 6.2.2/1].

We put

$$
\begin{align*}
& B_{\sigma}=B_{K}\left[k_{0}, p^{-m}\right]:={ }^{a} \sigma_{2}^{+}\left(B_{f}\right) \cap U, B:=B_{K}\left[k_{0}+2, p^{-m}\right] \tag{132}\\
& W_{B, \sigma}:=\left\{k \in B_{\sigma}(\mathbb{Z}) \mid k \equiv k_{0}(\bmod p-1), k+1>\alpha\right\} \tag{133}
\end{align*}
$$

We denote by $\sigma:=\sigma_{2}^{+}: A\left(B_{\sigma}\right) \rightarrow A(B)$ the K-algebra isomorphism given by the lemma above. We let $S_{B, \sigma}^{(p) \text { new }}(N, i)_{\alpha}$ denote $S_{B}^{(p) \text {-new }}(N, i)_{\alpha}$ viewed as an $A\left(B_{\sigma}\right)$-module via σ and $S_{B, \sigma}^{\text {ss }}$ denote $S_{B}^{\text {ss }}$ viewed as an $A\left(B_{\sigma}\right)$-submodule of $S_{B, \sigma}^{(p) \text {-new }}(N, i)_{\alpha}$. By 108, we have

$$
\begin{align*}
\mathrm{sp}_{k, \sigma}: S_{B, \sigma}^{(p) \text {-new }}(N, i)_{\alpha} & \rightarrow S_{B, \sigma}^{(p) \text {-new }}(N, i)_{\alpha} \otimes_{A\left(B_{\sigma}\right)} A\left(B_{\sigma}\right) / P_{k} \\
& \xrightarrow{\sim} S_{B, \sigma}^{(p) \text { new }}(N, i)_{\alpha} \otimes_{A(B)} A(B)_{\sigma} / P_{k+2} \xrightarrow{\sim} S_{k+2}^{(p) \text { new }}\left(\mathbb{1}_{p} ; K\right)_{\alpha} \tag{134}
\end{align*}
$$

for any $k \in W_{B, \sigma}$. Let $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{r}\right\}$ be a basis of $S_{B, \sigma}^{\mathrm{ss}}$ consisting of Hecke eigenforms given by

$$
\begin{equation*}
\mathbf{f}_{i}:=\sum_{n \geq 1} A_{i}(T(n)) q^{n} \tag{135}
\end{equation*}
$$

for the $A(B)$-algebra homomorphisms $A_{i}: \mathfrak{h}_{B}^{\text {red }} \rightarrow A(B)$ obtained in Theorem 4.3 . We may assume that $\mathbf{f}_{i} \in A^{\circ}(B)$ after shrinking B if necessary (Remark 4.5). For any $k \in W_{B, \sigma}$, we put

$$
\begin{equation*}
S_{B, \sigma}^{\mathrm{ss}, \circ}:=\bigoplus_{i=1}^{r} A^{\circ}(B)_{\sigma} \mathbf{f}_{i}, \quad S_{k+2}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right):=\bigoplus_{i=1}^{r} \mathcal{O}_{K} \mathrm{sp}_{k, \sigma}\left(\mathbf{f}_{i}\right) \tag{136}
\end{equation*}
$$

where $A^{\circ}(B)_{\sigma}$ denote the admissible \mathcal{O}_{K}-algebra $A^{\circ}(B)$ viewed as an $A^{\circ}\left(B_{\sigma}\right)$-algebra via $\sigma: A^{\circ}\left(B_{\sigma}\right) \rightarrow A^{\circ}(B)$. On the other hand, by Theorem 4.7, for any $k \in W_{B, \sigma}$, the surjective $A\left(B_{\sigma}\right)\left[\Gamma_{0}(N p)\right]$-homomorphism $\phi_{k} 126$) induces the surjective Hecke equivariant $A\left(B_{\sigma}\right)$-homomorphism ϕ_{k}^{*}

$$
\begin{align*}
\phi_{k}^{*}: \operatorname{Symb}_{\Gamma_{0}(N p)}\left(D\left(k_{B_{\sigma}}, \varepsilon ; A\left(B_{\sigma}\right)\right)\right)_{\leq \alpha}^{-} & \rightarrow \operatorname{Symb}_{\Gamma_{0}(N p)}\left(D\left(k_{B_{\sigma}}, \varepsilon ; A\left(B_{\sigma}\right)\right)\right)_{\leq \alpha}^{-} \otimes_{A\left(B_{\sigma}\right)} A\left(B_{\sigma}\right) / P_{k} \\
& \xrightarrow[\rightarrow]{\operatorname{Symb}_{\Gamma_{0}(N p)}(D(k, \varepsilon ; K))_{\leq \alpha} \xrightarrow{\sim} \operatorname{Symb}_{\Gamma_{0}(N p)}(L(k, \varepsilon ; K))_{\leq \alpha} .} . \tag{137}
\end{align*}
$$

By (123), we see that ϕ_{k}^{*} preserves the integral structure:

$$
\begin{equation*}
\phi_{k}^{*}: \operatorname{Symb}_{\Gamma_{0}(N p)}\left(D\left(k_{B_{\sigma}}, \varepsilon ; A^{\circ}\left(B_{\sigma}\right)\right)\right)_{\leq \alpha}^{-} \rightarrow \operatorname{Symb}_{\Gamma_{0}(N p)}\left(L\left(k, \varepsilon ; \mathcal{O}_{K}\right)\right)_{\leq \alpha}^{-} \tag{138}
\end{equation*}
$$

Since $S_{k_{0}+2}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right)$ is spanned by Hecke eigenforms g of level $N p$, the \mathcal{O}_{K}-linear extension of the map $g \mapsto \Delta_{g}^{-}$ gives the injective Hecke equivariant \mathcal{O}_{K}-homomorphism

$$
\begin{equation*}
\xi_{k_{0}}: S_{k_{0}+2}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right) \hookrightarrow \operatorname{Symb}_{\Gamma_{0}(N p)}\left(L\left(k_{0}, \varepsilon ; \mathcal{O}_{K}\right)\right)_{\leq \alpha}^{-} \tag{139}
\end{equation*}
$$

We put

$$
\begin{equation*}
\operatorname{Symb}_{k_{0}}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right):=\xi_{k_{0}}\left(S_{k_{0}+2}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right)\right), \quad \operatorname{Symb}_{B_{\sigma}}^{\mathrm{ss}, \mathrm{o}}:=\left(\phi_{k_{0}}^{*}\right)^{-1}\left(\operatorname{Symb}_{k_{0}}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right)\right) \tag{140}
\end{equation*}
$$

Let $\mathfrak{h}_{B, \sigma}^{\text {red }}$ denote $\mathfrak{h}_{B}^{\text {red }}$ viewed as an $A^{\circ}\left(B_{\sigma}\right)$-algebra via $\sigma: A^{\circ}\left(B_{\sigma}\right) \rightarrow A^{\circ}(B)$. Let $\mathfrak{h}_{B, \sigma}^{\text {red,o }}$ be the $A^{\circ}(B)_{\sigma^{-}}$ subalgebra of $\mathfrak{h}_{B, \sigma}^{\text {red }}$ generated by the Hecke eigensystems corresponding to the basis $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{r}\right\}$ of $S_{B, \sigma}^{\text {ss }}$ and $\mathfrak{h}_{k_{0}+2}\left(\mathcal{O}_{K}\right)$ the \mathcal{O}_{K}-subalgebra of $\mathfrak{h}_{k_{0}+2}(K)$ generated by the Hecke eigensystems corresponding to the basis $\left\{\operatorname{sp}_{k, \sigma}\left(\mathbf{f}_{1}\right), \ldots, \mathrm{sp}_{k, \sigma}\left(\mathbf{f}_{r}\right)\right\}$ of $S_{k+2}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right)$. Then $\operatorname{Symb}_{k_{0}}^{\mathrm{ss}}\left(\mathcal{O}_{K}\right)$ (resp. Symb $\left.B_{B_{\sigma}}^{\mathrm{ss}, \mathrm{o}}\right)$ is a module over $\mathfrak{h}_{k_{0}+2}\left(\mathcal{O}_{K}\right)$ (resp. $\left.\mathfrak{h}_{B, \sigma}^{\text {red,o }}\right)$ via the homomorphisms which send $T(\ell)$ to the usual Hecke operator T_{ℓ}.
Proposition 5.2. There exists a $\mathfrak{h}_{B, \sigma}^{\mathrm{red}, \circ}$-isomorphism $\Xi: S_{B, \sigma}^{\mathrm{ss}, \mathrm{o}} \xrightarrow{\sim} \mathrm{Symb}_{B_{\sigma}}^{\mathrm{ss}, \mathrm{o}}$ such that the following diagram commutes:

after shrinking the disk B_{σ} around the center k_{0} if necessary.
Proof. We put $A:=A^{\circ}\left(B_{\sigma}\right), \mathfrak{h}:=\mathfrak{h}_{B, \sigma}^{\mathrm{red}, \mathrm{o}}, S:=S_{B, \sigma}^{\mathrm{ss}, \mathrm{o}}$, and $\operatorname{Symb}:=\operatorname{Symb}_{B_{\sigma}}^{\mathrm{ss}, \mathrm{o}}$ for short. Let $t_{k_{0}}$ be a generator of the maximal ideal $P_{k_{0}}$ of A at the closed point k_{0}. Since $\xi_{k_{0}}$ gives the isomorphism $S / t_{k_{0}} S \xrightarrow{\sim} \operatorname{Symb} / t_{k_{0}}$ Symb, it suffices to prove that there exists a \mathfrak{h}-isomorphism $\Xi: S \xrightarrow{\sim}$ Symb such that the following diagram commutes:

after shrinking the disk B_{σ} around the center k_{0} if necessary. Let $\mathfrak{h}_{\left(k_{0}\right)}:=\mathfrak{h} \otimes_{A} A_{P_{k_{0}}}$ be the localization of \mathfrak{h} at $P_{k_{0}}$. Since $\mathfrak{h}_{\left(k_{0}\right)}$ is Noetherian and not Artinian, we see that the Krull dimension of \mathfrak{h} is 1 by Krull's principal ideal theorem (see [18, Theorem 13.5]). By [18, Theorem 2.3], the embedding dimension of \mathfrak{h} is 1 , and hence \mathfrak{h} is a regular local ring of Krull dimension 1. By [18, Theorem 19.2], the global dimension of \mathfrak{h} is 1, which implies Symb has a finite injective dimension less than or equal to 1 by [18, Lemma 2, Section 19]. Let $S_{\left(k_{0}\right)}:=S \otimes_{\mathfrak{h}} \mathfrak{h}_{\left(k_{0}\right)}$ and $\operatorname{Symb}_{\left(k_{0}\right)}:=\operatorname{Symb} \otimes_{\mathfrak{h}} \mathfrak{h}_{\left(k_{0}\right)}$ be the localizations at $P_{k_{0}}$. Let $t_{\left(k_{0}\right)}$ be the image of $t_{k_{0}}$ in $\mathfrak{h}_{\left(k_{0}\right)}$, and hence $t_{\left(k_{0}\right)}$ belongs to the annihilator of $\mathfrak{h}_{\left(k_{0}\right)} / P_{k_{0}} \mathfrak{h}_{\left(k_{0}\right)}$. Since $\mathfrak{h}_{\left(k_{0}\right)}$ is A-torsion-free and A is an integral domain, we see that $t_{\left(k_{0}\right)}$ is $\mathfrak{h}_{\left(k_{0}\right)}$-regular, $S_{\left(k_{0}\right)}$-regular, and $\operatorname{Symb}_{\left(k_{0}\right)}$-regular. By [18, Lemma 2, Section 18], we see that both $S_{\left(k_{0}\right)}$ and $\operatorname{Symb}_{\left(k_{0}\right)}$ are maximal Cohen-Macaulay modules. By [8, Proposition
21.13], there exists a $\mathfrak{h}_{\left(k_{0}\right)}$-isomorphism $\Xi_{\left(k_{0}\right)}: S_{\left(k_{0}\right)} \xrightarrow{\sim} \operatorname{Symb}_{\left(k_{0}\right)}$ such that the following diagram commutes:

Therefore we obtain the desired commutative diagram after shrinking the disk B_{σ} around the center k_{0} if necessary.

By the proposition above, we have the stronger result than [23, Theorem 4.13] in that we can take an error term (denoted by Ω_{κ} in [23]) of the p-adic interpolation as a p-adic unit u_{k} as follows:

Theorem 5.3. Let $f \in S_{k_{0}+2}^{\text {new }}(N, \varepsilon)_{\alpha}$ be a primitive form with $k_{0}+1>\alpha \neq\left(k_{0}+1\right) / 2, K$ a complete subfield of \mathbb{C}_{p} containing the p-adic completion of the Hecke field $\mathbb{Q}_{f^{*}}$, and \mathbf{f} a Coleman family passing through f^{*}. Then there exist a K-affinoid disk $B=B_{K}\left[k_{0}, p^{-m}\right]$ with some positive integer m and a Hecke eigenvector $\Phi_{\mathbf{f}} \in \mathrm{Symb}_{B_{\sigma}}^{\mathrm{ss}, \mathrm{o}}$ with the same eigenvalues as \mathbf{f} such that for any $k \in W_{B, \sigma}$, there exists $u_{k} \in \mathcal{O}_{K}^{\times}$such that we have the following:

1. $\phi_{k}^{*}\left(\Phi_{\mathbf{f}}\right)=u_{k} \Delta_{\mathbf{f}(k+2)}^{-}$.
2. $\phi_{k_{0}}^{*}\left(\Phi_{\mathbf{f}}\right)=\Delta_{f^{*}}^{-}$(i.e., $\left.u_{k_{0}}=1\right)$.

Proof. The Hecke equivariant isomorphism Ξ as Proposition 5.2 induces a Hecke equivariant \mathcal{O}_{K}-isomorphism Ξ_{k} as follows:

We put $\Phi_{\mathbf{f}}:=\Xi(\mathbf{f})$. Then we see that $\phi_{k}^{*}\left(\Phi_{\mathbf{f}}\right)=\Xi_{k}(\mathbf{f}(k+2))$ is a generator of $\lambda_{\mathbf{f}(k+2)}$-eigenmodule

$$
\begin{equation*}
\operatorname{Symb}_{\Gamma_{0}(N p)}\left(L\left(k, \varepsilon ; \mathcal{O}_{K}\right)\right)^{-}\left[\lambda_{\mathbf{f}(k+2)}\right] . \tag{145}
\end{equation*}
$$

${ }_{175}$ By [13, Proposition 3.3], the $\lambda_{\mathbf{f}(k+2)}$-eigenmodule is generated by $\Delta_{\mathbf{f}(k+2)}$ over \mathcal{O}_{K}. We thus the first assertion and the second assertion follows from $\Xi_{k_{0}}=\xi_{k_{0}}$.

We refer to $\Phi_{\mathbf{f}}$ obtained in the theorem above as a Hecke eigensymbol attached to a Coleman family \mathbf{f}.

5.2. A p-adic analytic family of the D-th Shintani lifting for a Coleman family

Hereafter, we assume that k_{0} is even and $\varepsilon=\chi^{2}$ with a Dirichlet character χ modulo N. We replace the notation k_{0} by $2 k_{0}$ so that we remark that the set $W_{B, \sigma}$ defined by $\sqrt{133}$ is replaced as follows:

$$
\begin{equation*}
W_{B, \sigma}=\left\{k \in \mathbb{Z} \mid k \equiv 2 k_{0}\left(\bmod (p-1) p^{m}\right), k+1>\alpha\right\} \tag{146}
\end{equation*}
$$

We consider the family of $\theta_{D}^{\text {alg }}\left(\mathbf{f}(2 k+2)\right.$'s for $2 k \in W_{B, \sigma}$. Let n be a positive integer with $\chi(-1)(-1)^{k+1} n \equiv$ $1800,1(\bmod 4)$. We define the n-th coefficient of a formal power series that interpolates the family of the D-th Shintani lifting below. Let t be a positive divisor of N / c_{χ} and $Q \in \mathcal{L}_{t c_{\chi} N p}\left(\Delta_{n, t}\right)$. Assume that $\operatorname{ord}_{p}(n) \leq 1$. Then we have the following:

Lemma 5.4. Let c be the integer given by $[a, b, c]=Q$. Then we have $p \nmid c$. In particular, for any $(x, y) \in$ $\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}$, we have $Q(x, y) \in \mathbb{Z}_{p}^{\times}$.
185 Proof. We put $\Delta:=\Delta_{n, t}$ for short. By 39), there exist a positive integer l with $l^{2} \mid \Delta$, a integer $\varrho \in$ $S_{N p}\left(\Delta / l^{2}\right)$, and $m \| m(l, \varrho):=\left(N p, \varrho,\left(\varrho^{2}-\Delta / l^{2}\right) / 4 N p\right)$ such that $Q \in l \cdot \mathcal{L}_{N p,,, m, m(l, \varrho) / m}^{0}\left(\Delta / l^{2}\right)$. Since $\Delta \not \equiv 0\left(\bmod p^{2}\right)$ from $\operatorname{ord}_{p}(n) \leq 1$, we have $p \nmid l$. If $p \mid m(l, \varrho)$, then we have $p \mid \varrho$ and $\varrho^{2} \equiv \Delta / l^{2}\left(\bmod p^{2}\right)$, and hence $\Delta / l^{2} \equiv 0\left(\bmod p^{2}\right)$. This is a contradiction to $\Delta \not \equiv 0\left(\bmod p^{2}\right)$. Thus we have $p \nmid m(l, \varrho)$, and hence $p \nmid c$.
By the lemma above, we see that $Q(x, y)^{k_{B_{\sigma}}}$ is well-defined analytic function on $\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}$. We define $J_{Q} \in$ $\operatorname{Hom}_{A^{\circ}\left(B_{\sigma}\right)}\left(D\left(k_{B_{\sigma}}, \chi^{2} ; A^{\circ}\left(B_{\sigma}\right)\right), A^{\circ}\left(B_{\sigma}\right)\right)$ by

$$
\begin{equation*}
J_{Q}(\mu):=\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}} Q(x, y)^{k_{B_{\sigma}}} d \mu(x, y) \tag{147}
\end{equation*}
$$

Then we have the following:
Lemma 5.5. For any $2 k \in W_{B, \sigma}$ and $\mu \in D\left(k_{B_{\sigma}}, \chi^{2} ; A^{\circ}\left(B_{\sigma}\right)\right)$, we have

$$
\begin{equation*}
J_{Q}(\mu)(2 k)=\left[\phi_{2 k}(\mu), Q^{k}(X, Y)\right] . \tag{148}
\end{equation*}
$$

In particular, by Theorem 5.3, we have

$$
\begin{equation*}
\chi_{0}(Q) J_{Q}\left(\Phi_{\mathbf{f}}\left(\partial C_{Q}\right)\right)(2 k)=u_{2 k}\left(\Omega(\mathbf{f}(2 k+2))^{-}\right)^{-1} I_{k, \chi}(\mathbf{f}(2 k+2), Q) \tag{149}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
J_{Q}(\mu)(2 k) & =\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}} Q(x, y)^{k} d \mu_{2 k}(x, y) \\
& =\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}}\left[(y X-x Y)^{2 k}, Q^{k}(X, Y)\right] d \mu_{2 k}(x, y) \\
& =\left[\int_{\mathbb{Z}_{p} \times \mathbb{Z}_{p}^{\times}}(y X-x Y)^{2 k} d \mu_{2 k}(x, y), Q^{k}(X, Y)\right]=\left[\phi_{2 k}(\mu), Q^{k}(X, Y)\right] .
\end{aligned}
$$

Definition 5.6. Let D be a fundamental discriminant with $\chi(-1)(-1)^{k_{0}+1} D>0$ and $(D, N p)=1$, and $\Phi_{\mathbf{f}} \in \operatorname{Symb}_{B_{\sigma}}^{\text {ss }}$ a Hecke eigensymbol attached to \mathbf{f}. Let n be a positive integer with $\chi(-1)(-1)^{k+1} n \equiv 0,1(\bmod 4)$ and $\operatorname{ord}_{p}(n) \leq 1, t$ a positive divisor of N / c_{χ}, and $Q \in \mathcal{L}_{t c_{\chi} N p}\left(\Delta_{n, t}\right)$. We set

$$
\begin{equation*}
J_{B_{\sigma}}(Q):=\chi_{0}(Q) J_{Q}\left(\Phi_{\mathbf{f}}\left(\partial C_{Q}\right)\right) \in A^{\circ}\left(B_{\sigma}\right) . \tag{150}
\end{equation*}
$$

We put

$$
\begin{equation*}
a_{n}\left(\theta_{B_{\sigma}, D}(\mathbf{f})\right):=\sum_{t \mid c_{\chi}^{-1} N} \mu \chi_{D} \chi_{0}^{-1}(t) t^{-k_{B_{\sigma}}-1} \sum_{Q \in \mathcal{L}_{t_{c_{\chi}} N_{p}}\left(\Delta_{n, t}\right) / \Gamma_{0}(N p)} \omega_{D}(Q) J_{B_{\sigma}}(Q) . \tag{151}
\end{equation*}
$$

Let m be a positive integer and v a non-negative integer such that $0 \leq \operatorname{ord}_{p}\left(m / p^{2 v}\right) \leq 1$. We put

$$
\begin{equation*}
a_{m}\left(\theta_{B_{\sigma}, D}(\mathbf{f})\right):=a_{p}(\mathbf{f})^{v} a_{m / p^{2 v}}\left(\theta_{B_{\sigma}, D}(\mathbf{f})\right) \tag{152}
\end{equation*}
$$

if $\chi(-1)(-1)^{k+1} m \equiv 0,1(\bmod 4)$ and $a_{m}\left(\theta_{B_{\sigma}, D}(\mathbf{f})\right):=0$ otherwise. For $i \in \mathbb{Z} / 4 \mathbb{Z}$, we define the n-th coefficient of $\theta_{B_{\sigma}, D}^{i}(\mathbf{f}) \in A^{\circ}\left(B_{\sigma}\right)[[q]]$ by

$$
\begin{equation*}
a_{n}\left(\theta_{B_{\sigma}, D}^{i}(\mathbf{f})\right):=\left(1-p^{-1}\right) c_{B_{\sigma}, D}^{i} \cdot a_{n}\left(\theta_{B_{\sigma}, D}(\mathbf{f})\right), \tag{153}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{B_{\sigma}, D}^{i}:=(-1)^{[(i+1) / 2]} \chi_{D}\left(c_{\chi}\right) \chi(-1)^{1 / 2} \chi^{-1}(D) 2^{k_{B_{\sigma}}+1} c_{\chi}^{k_{B \sigma}} G\left(\chi_{0}^{-1}\right) . \tag{154}
\end{equation*}
$$

We then have the main theorem as follows:
Theorem 5.7. Let $f \in S_{2 k_{0}+2}^{\text {new }}\left(N, \chi^{2}\right)_{\alpha}$ be a primitive form with $2 k_{0}+1>\alpha \neq\left(2 k_{0}+1\right) / 2$ and $c_{\chi} \| N$, K the p-adic completion of the field obtained by adjoining $\chi(-1)^{1 / 2}|D|^{1 / 2} G\left(\chi_{0}^{-1}\right)$ and the values of χ to the Hecke field $\mathbb{Q}_{f^{*}}, D$ a fundamental discriminant with $\chi(-1)(-1)^{k_{0}+1} D>0$ and $(D, N p)=1$. Then there exists a positive integer m_{0} such that for any $r>m_{0}+1$, if an integer k satisfies $2 k+1>\alpha$ and $2 k \equiv 2 k_{0}\left(\bmod (p-1) p^{r}\right)$, then there exist a primitive form $f_{2 k+2} \in S_{2 k+2}^{\text {new }}\left(N, \chi^{2} ; \mathcal{O}_{K}\right)_{\alpha}$ such that

$$
\begin{equation*}
e_{k} \theta_{D}^{\mathrm{alg}}\left(f_{2 k+2}^{*}\right) \equiv \theta_{D}^{\mathrm{alg}}\left(f^{*}\right)\left(\bmod p^{r-m_{0}} \mathcal{O}_{K}\right) \tag{155}
\end{equation*}
$$

for some $e_{k} \in \mathcal{O}_{K}^{\times}$and $f_{2 k+2}^{*}$ lies in a Coleman family passing through f^{*}.
Proof. By Theorem 5.3, we have $\Phi_{\mathbf{f}} \in \operatorname{Symb}_{B_{\sigma}}^{\mathrm{ss}, \circ}$ such that for any $2 k \in W_{B, \sigma}$, there exists $u_{2 k} \in \mathcal{O}_{K}^{\times}$such that $\phi_{2 k}^{*}\left(\Phi_{\mathbf{f}}\right)=u_{2 k} \Delta_{\mathbf{f}(2 k+2)}$ and $u_{2 k_{0}}=1$. Recall that $\mathbf{f}(2 k+2)=f_{2 k+2}^{*}$ for a primitive form $f_{2 k+2} \in$ $S_{2 k+2}^{\text {new }}\left(N, \chi^{2} ; \mathcal{O}_{K}\right)_{\alpha}$ by Theorem 4.4. Set $e_{k}:=(-1)^{\left[\left(k_{0}+1\right) / 2\right]}(-1)^{[(k+1) / 2]} u_{2 k}$ By Theorem 3.3 and Lemma 5.5 . we see that $p \cdot \theta_{B_{\sigma}, D}^{k_{0}}(\mathbf{f}) \in A^{\circ}\left(B_{\sigma}\right)$ has the specialization $\theta_{B_{\sigma}, D}^{k_{0}}(\mathbf{f})(2 k)=e_{k} \theta_{D}^{\text {alg }}\left(f_{2 k+2}^{*}\right) \in S_{k+3 / 2}^{+}\left(4 N p, \tilde{\chi} ; \mathcal{O}_{K}\right)$.

Remark 5.8. The p-adic interpolation of the classical Shintani lifting has already been done by Stevens 29] and Park [23] for a Hida family and a Coleman family, respectively. Roughly speking, Park proved that for all $n \geq 1$,

$$
\begin{equation*}
\left|\Omega_{k} \cdot a_{n}\left(\theta_{1}^{\text {alg }}\left(f_{2 k+2}^{*}\right)\right)-a_{n}\left(\theta_{1}^{\text {alg }}\left(f^{*}\right)\right)\right|_{p}<1 \tag{156}
\end{equation*}
$$

for some $\Omega_{k} \in K^{\times}$in [23]. The significant difference between their results and our result above is that we can take the error term e_{k} of the p-adic interpolation as a p-adic unit, and hence the congruence makes sense. Indeed, on the congruence 155 , we see that $a_{n}\left(\theta_{D}^{\text {alg }}\left(f_{2 k+2}^{*}\right)\right)$ vanishes modulo p if and only if $a_{n}\left(\theta_{D}^{\text {alg }}\left(f^{*}\right)\right)$ vanishes modulo p. However, even if we assume $\Omega_{k} \in \mathcal{O}_{K}$ on (156), the congruence

$$
\begin{equation*}
\Omega_{k} \cdot a_{n}\left(\theta_{1}^{\text {alg }}\left(f_{2 k+2}^{*}\right)\right) \equiv a_{n}\left(\theta_{1}^{\mathrm{alg}}\left(f^{*}\right)\right)\left(\bmod p^{r-m_{0}} \mathcal{O}_{K}\right) \tag{157}
\end{equation*}
$$

cannot tell us that $\theta_{1}^{\text {alg }}\left(f_{2 k+2}^{*}\right)$ vanish modulo p if $\theta_{1}^{\text {alg }}\left(f^{*}\right)$ vanish modulo p unless Ω_{k} is a p-adic unit.
We keep the notation as in the theorem above. Since $f_{2 k+2} \otimes \chi_{D} \chi_{0}^{-1}$ and $f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}$ are Hecke eigenforms of trivial character ([20, Lemma 4.3.10]), we have

$$
\begin{equation*}
L\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)=\left(1-\chi_{D} \chi^{-1}(p) p^{k} a_{p}\left(f_{2 k+2}^{*}\right)^{-1}\right) L\left(k+1, f_{2 k+2} \otimes \chi_{D} \chi_{0}^{-1}\right) \tag{158}
\end{equation*}
$$

by [20, Theorem 4.5.16]. We put

$$
\begin{equation*}
L^{\operatorname{alg}}\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right):=\frac{k!L\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)}{\pi^{k+1} \Omega\left(f_{2 k+2}^{*}\right)^{-}} \in \mathcal{O}_{K} \tag{159}
\end{equation*}
$$

Then by Proposition 2.10 and Theorem 2.4, we have

$$
\begin{align*}
e_{k}^{-1} a_{|D|}\left(\theta_{B_{\sigma}, D}^{k_{0}}(\mathbf{f})\right)(2 k) & =\left(\Omega\left(f_{2 k+2}^{*}\right)^{-}\right)^{-1} a_{|D|}\left(\theta_{k, \chi, D}^{N p}\left(f_{2 k+2}^{*}\right)\right) \tag{160}\\
& =2\left(1-p^{-1}\right)|D|^{k+1 / 2} c_{\chi}^{2 k+1} R_{D}\left(f_{2 k+2}\right) L^{\mathrm{alg}}\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right) . \tag{161}
\end{align*}
$$

Since $2\left(1-p^{-1}\right)|D|^{k_{B}+1 / 2} N^{2 k_{B}+1} \in A\left(B_{\sigma}\right)^{\times}$, we can normalize $a_{|D|}\left(\theta_{B_{\sigma}, D}^{k_{0}}(\mathbf{f})\right)$ as

$$
\begin{equation*}
L_{D}(\mathbf{f}):=\left(2\left(1-p^{-1}\right)|D|^{k_{B}+1 / 2} c_{\chi}^{2 k_{B}+1}\right)^{-1} a_{|D|}\left(\theta_{B_{\sigma}, D}^{k_{0}}(\mathbf{f})\right) \in A\left(B_{\sigma}\right) \tag{162}
\end{equation*}
$$

so that for any $2 k \in W_{B, \sigma}$, we have

$$
\begin{equation*}
e_{k}^{-1} L_{D}(\mathbf{f})(2 k)=R_{D}\left(f_{2 k+2}\right) L^{\text {alg }}\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right) \tag{163}
\end{equation*}
$$

Corollary 5.9. Let the notation and the assumptions be the same as Theorem 5.7. Then there exists a positive integer r such that for any integer k satisfying $2 k+1>\alpha$ and $2 k \equiv 2 k_{0}\left(\bmod (p-1) p^{r}\right)$, we have the following non-negative equality:

$$
\begin{equation*}
\operatorname{ord}_{p}\left(R_{D}\left(f_{2 k+2}\right) L^{\mathrm{alg}}\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)\right)=\operatorname{ord}_{p}\left(R_{D}(f) L^{\mathrm{alg}}\left(k_{0}+1, f^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)\right) \tag{164}
\end{equation*}
$$

Moreover, if $R_{D}(f) L\left(k_{0}+1, f \otimes \chi_{D} \chi_{0}^{-1}\right) \neq 0$, then we have

$$
\begin{equation*}
\operatorname{ord}_{p}\left(L^{\text {alg }}\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)\right)=\operatorname{ord}_{p}\left(L^{\text {alg }}\left(k_{0}+1, f^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)\right) \geq 0 \tag{165}
\end{equation*}
$$

in particular, $L\left(k+1, f_{2 k+2} \otimes \chi_{D} \chi_{0}^{-1}\right) \neq 0$.
Proof. By Theorem 5.7, there exists a positive integer m_{0} such that for any $r>m_{0}+1$, if an integer k satisfies $2 k+1>\alpha$ and $2 k \equiv 2 k_{0}\left(\bmod (p-1) p^{r}\right)$, then

$$
\begin{equation*}
e_{k} R_{D}\left(f_{2 k+2}\right) L^{\text {alg }}\left(k+1, f_{2 k+2}^{*} \otimes \chi_{D} \chi_{0}^{-1}\right) \equiv R_{D}(f) L^{\text {alg }}\left(k_{0}+1, f^{*} \otimes \chi_{D} \chi_{0}^{-1}\right)\left(\bmod p^{r-m_{0}} \mathcal{O}_{K}\right) \tag{166}
\end{equation*}
$$

for some $e_{k} \in \mathcal{O}_{K}$. Taking sufficiently large r, we have the first assertion. The last assertion follows from

Remark 5.10. We keep the notation as in the corollary above. In general, $R_{D}\left(f_{2 k+2}\right)$ may vanish. However, as seen in the proof above, if $R_{D}(f) L\left(k_{0}+1, f \otimes \chi_{D} \chi_{0}^{-1}\right) \neq 0$, then $R_{D}\left(f_{2 k+2}\right) \neq 0$ in a neighborhood of k_{0}. In other words, the the signatures of the eigenvalues of the initial primitive form f for the Atkin-Lehner involutions coincide with that of $f_{2 k+2}$ for k sufficiently close to k_{0}, p-adically (see Remark 2.5.(3)).

6. Application

We apply Corollary 5.9 assuming that $\chi=\mathbb{1}, \alpha=0$, and N is square-free.
6.1. Congruences between the central L-values attached to cusp forms of different weights

Theorem 6.1. Let $f \in S_{2 k+2}^{\text {new }}(N, \mathbb{1})_{0}$ and $g \in S_{2 k^{\prime}+2}^{\text {new }}(N, \mathbb{1})_{0}$ be primitive forms with $k, k^{\prime} \geq 0$, and \mathcal{O} the ring of integers of the p-adic completion of the field obtained by adjoining $G\left(\chi_{D}\right)$ to the composite field $\mathbb{Q}_{f^{*}} \mathbb{Q}_{g^{*}}$. Assume that $f^{*} \equiv g^{*}\left(\bmod p^{r_{0}} \mathcal{O}\right)$ for some positive integer r_{0} and that $k \equiv k^{\prime}\left(\bmod (p-1) p^{r}\right)$ for a sufficiently large integer r and that the Galois representation $\rho_{f^{*}}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathrm{GL}_{2}(\mathcal{O})$ attached to f^{*} is residually irreducible. Let D be a fundamental discriminant with $(-1)^{k+1} D>0$ and $(D, N p)=1$. Then there exist $e_{k^{\prime}} \in \mathcal{O}^{\times}$such that we have

$$
\begin{equation*}
R_{D}(f) L^{\mathrm{alg}}\left(k+1, f^{*} \otimes \chi_{D}\right) \equiv e_{k^{\prime}} R_{D}\left(f_{2 k^{\prime}+2}\right) L^{\mathrm{alg}}\left(k^{\prime}+1, g^{*} \otimes \chi_{D}\right)\left(\bmod p^{r_{0}} \mathcal{O}\right) \tag{167}
\end{equation*}
$$

Moreover, if $R_{D}(f) L\left(k+1, f \otimes \chi_{D}\right) \neq 0$, then we have

$$
\begin{equation*}
L^{\operatorname{alg}}\left(k+1, f^{*} \otimes \chi_{D}\right) \equiv e_{k^{\prime}} L^{\operatorname{alg}}\left(k^{\prime}+1, g^{*} \otimes \chi_{D}\right)\left(\bmod p^{r_{0}} \mathcal{O}\right) \tag{168}
\end{equation*}
$$

Remark 6.2. When $k=k^{\prime}$ in the theorem above, we can take $e_{k^{\prime}}=1$ by [30, Corollary 1.11]. Namely, the result in this case is contained in [30, Corollary 1.11].

Proof. Since f is p-ordinary and $\rho_{f^{*}}$ is residually irreducible, we may identify our periods defined by 98 , with canonical periods in the sense of [30] by [30, Theorem 1.13] and [31, Lemma 3.8]. By Theorem 4.4 and Corollary 5.9, we have

$$
\begin{align*}
& f_{2 k^{\prime}+2}^{*} \equiv f^{*} \equiv g^{*}\left(\bmod p^{r_{0}} \mathcal{O}\right) \tag{169}\\
& e_{k^{\prime}} R_{D}\left(f_{2 k^{\prime}+2}\right) L^{\text {alg }}\left(k^{\prime}+1, f_{2 k^{\prime}+2}^{*} \otimes \chi_{D}\right) \equiv R_{D}(f) L^{\mathrm{alg}}\left(k+1, f^{*} \otimes \chi_{D}\right)\left(\bmod p^{r_{0}} \mathcal{O}\right) \tag{170}
\end{align*}
$$

for some $e_{k^{\prime}, D} \in \mathcal{O}^{\times}$. By [30, Corollary 1.11], the congruence 169 between $f_{2 k^{\prime}+2}^{*}$ and g^{*} implies

$$
\begin{equation*}
L^{\mathrm{alg}}\left(k^{\prime}+1, f_{2 k^{\prime}+2}^{*} \otimes \chi_{D}\right) \equiv L^{\mathrm{alg}}\left(k^{\prime}+1, g^{*} \otimes \chi_{D}\right)\left(\bmod p^{r_{0}} \mathcal{O}\right) \tag{171}
\end{equation*}
$$

Theorem 6.3 ([30, Theorem 3.3]). For any negative fundamental discriminant D with $(D, N q)=1$, we have the congruence

$$
L^{\mathrm{alg}}\left(1, f_{E}^{q} \otimes \chi_{D}\right) \equiv \frac{1}{2} \prod_{\ell \mid N_{1}: \text { prime }}\left(1-\chi_{D}(\ell) / \ell\right) \prod_{\ell \mid N_{2}: \text { prime }}\left(1-\chi_{D}(\ell)\right) \cdot L\left(0, \chi_{D}\right)^{2}(\bmod 3)
$$

Since the analytic class number formula shows that $L\left(0, \chi_{D}\right)$ equals the class number $h(D)$ of $\mathbb{Q}(\sqrt{D})$, up to a 3adic unit, the indivisibility of $h(D)$ by 3 implies that we have $L\left(1, f_{E} \otimes \chi_{D}\right) \neq 0$ for a fundamental discriminant D with $(D, N p)=1, \chi_{D}(\ell)=-1$ for each prime $\ell \mid N_{2}$ and $\chi_{D}(\ell) / \ell \equiv-1(\bmod 3)$ for each prime $\ell \mid N_{1}$ by the theorem above (see [30, Corollary 3.4]). Then, Vatsal showed that $M_{f_{E}}(X) \gg X$ (see [30, Corollary 3.5]) by 20 using a theorem of Nakagawa and Horie 21 to estimate a proportion of fundamental discriminants D satisfying $3 \nmid h(D)$ and the conditions which we mentioned above. By Corollary 5.9, we have the following:

Theorem 6.4. Let $N \geq 3$ be a square-free odd integer and E an elliptic curve over \mathbb{Q} of conductor N. Assume that E has a rational potint of order 3 , that E has good ordinary reduction at 3 and that if ℓ is a prime at which E has non-split multiplicative reduction, then $\ell \equiv 2(\bmod 3)$. Let f_{E}^{*} be the 3 -stabilization of f_{E}. Then there exists form $f_{2 k+2} \in S_{2 k+2}^{\text {new }}\left(N, \mathbb{1} ; \mathbb{Q}_{f_{E}^{*}}\right)_{0}$ such that for any embedding σ of $\mathbb{Q}_{f_{E}^{*}}$ into \mathbb{C}, we have $M_{f_{2 k+2}^{\sigma}}(X) \gg X$, where $f_{2 k+2}^{*}$ lies in a Coleman family passing through f_{E}^{*} and $f_{2 k+2}^{\sigma} \in S_{2 k+2}^{\text {new }}(N, \mathbb{1})$ is the primitive form defined by $a_{n}\left(f_{2 k+2}^{\sigma}\right):=a_{n}\left(f_{2 k+2}\right)^{\sigma}$.

Proof. Let D be a negative fundamental discriminant with $(D, N p)=1, \chi_{D}(\ell)=-1$ for each prime $\ell \mid N_{2}$ and $\chi_{D}(\ell) / \ell \equiv-1(\bmod 3)$ for each prime $\ell \mid N_{1}$. By assumption, we have $\chi_{D}(\ell)=1$ for each prime $\ell \mid N_{1}$. Recall that $a_{\ell}\left(f_{E}\right)=-1$ if $\ell \mid N_{1}$ and $a_{\ell}\left(f_{E}\right)=1$ if $\ell \mid N_{2}$. We thus have $\chi_{D}(\ell)=-a_{\ell}\left(f_{E}\right)=w_{\ell}(f)$ for any prime $\ell \mid N$ (see $\sqrt[27]{ })$), and hence $R_{D}\left(f_{E}\right) \neq 0$. Then there exists a primitive form $f_{2 k+2} \in S_{2 k+2}^{\text {new }}\left(N, \mathbb{1} ; \mathbb{Q}_{f_{E}^{*}}\right)_{0}$ satisfying $M_{f_{2 k+2}}(X) \gg X$ by Corollary 5.9. For any isomorphism σ of $\mathbb{Q}_{f_{E}^{*}}$ into \mathbb{C}, we see that $f_{2 k+2}^{\sigma} \in S_{2 k+2}^{\text {new }}(N, \mathbb{1})$ is a primitive form by [26, Proposition 1.2] and the theorem holds by [28, Theorem 1].

Example 6.5. Let E be the elliptic curve over \mathbb{Q} given by the equation $y^{2}+y=x^{3}+x^{2}-9 x-15$. Then E has a rational point of order 3 and good ordinary reduction at 3 and is of conductor 19 ([30, Example 3.7]).

Moreover, E has split multiplicative reduction at 19 , and hence E satisfies the assumption of the theorem above. Furthermore, equations

$$
\begin{align*}
& y^{2}+y=x^{3}+x^{2}+9 x+1 \tag{172}\\
& y^{2}+y=x^{3}+x^{2}-23 x-50 \tag{173}\\
& y^{2}+y=x^{3}+x^{2}-x-1 \tag{174}\\
& y^{2}+y=x^{3}+x^{2}-49 x+600 \tag{175}
\end{align*}
$$ at any prime factor of their conductor and satisfy the assumption of the theorem above.

Acknowledgments

The author expresses gratitude to Professor Atsushi Yamagami for his valuable guidance and a lot of useful advice and Professor Atsushi Murase and Professor Bernhard Heim for useful advices and warm encouragement.
[1] F. Andreatta, A. Iovita, G. Stevens, Overconvergent Eichler-Shimura isomorphisms, J. Inst. Math. Jussieu 14 (2) (2015) 221-274.
[2] A. Ash, G. Stevens, p-adic deformations of arithmetic cohomology, preprint.
[3] A. Ash, G. Stevens, Modular forms in characteristic ℓ and special values of their L-functions, Duke Math. J. 53 (3) (1986) 849-868.
[4] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis. A systematic approach to rigid analytic geometry, Vol. 261 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg New York Tokyo, 1984.
[5] G. Böckle, On the density of modular points in universal deformation spaces, Amer. J. of Math. 123 (5) (2001) 985-1007.
[6] R. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1-3) (1996) 215-241.
[7] R. Coleman, p-adic Banach spaces and families of modular forms, Invent. Math. 127 (3) (1997) 417-479.
[8] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Vol. 150 of Graduate Texts in Mathematics, Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest, 1995.
[9] B. Gross, W. Kohnen, D. Zagier, Heegner points and derivatives of L-series. II, Math. Ann. 278 (1-4) (1987) 497-562.
[10] H. Hida, On Λ-adic forms of half integral weight for $\operatorname{SL}(2) / \mathbb{Q}$., London Math. Soc. Lecture Note Ser. 215 (1995) 139-166.
[11] H. Hida, Modular Forms and Galois Cohomology, Vol. 69 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2000.
[12] H. Hida, Y. Maeda, Non-abelian base change for totally real fields, Pacific J. Math. 181 (3) (1997) 189-218.
[13] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, Comtemp. Math. 165 (1994) 81-110.
[14] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, Math. Ann. 271 (2) (1985) 237-
[17] H. Kojima, Y. Tokuno, On the Fourier coefficients of modular forms of half integral weight belonging to Kohnen's spaces and the central values of zeta functions, Tohoku Math. J. 56 (1) (2004) 125-145.
[18] H. Matsumura, Commutative Ring Theory, Vol. 8 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1989.
[19] T. Miyake, On automorphic forms on GL_{2} and hecke operators, Ann. of Math. 94 (1971) 174-189. 268.
[15] W. Kohnen, On the proportion of quadratic character twists of L-functions attached to cusp forms not vanishing at the central point, J. Reine Angew. Math. 508 (1999) 179-187.
[16] W. Kohnen, D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981) 175-198.

5 [20] T. Miyake, Modular Forms, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1989.
[21] J. Nakagawa, K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1) (1988) 20-24.
[22] K. Ono, C. Skinnner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. 134 (3) (1998) 651-660.
[23] J. Park, p-adic family of half-integral weight modular forms via overconvergent Shintani lifting, Manuscripta Math. 131 (3-4) (2010) 355-384.
[24] R. Pollack, G. Stevens, Critical slope p-adic L-functions, J. Lond. Math. Soc. 87 (2) (2013) 428-252.
[25] N. Ramsey, p-adic interpolation of square roots of central L-values of modular forms, Math. Ann. 358 (2014) 1031-1058.
[26] G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1) (1972) 130-190.
[27] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (3) (1973) 440-481.
[28] G. Shimura, On the periods of modular forms, Math. Ann. 229 (3) (1977) 211-221.
[29] G. Stevens, Λ-adic modular forms of half-integral weight and a Λ-adic shintani lifting, Comtemp. Math. 174 (1994) 129-151.
[30] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. 98 (2) (1999) 397-419.
[31] V. Vatsal, Integral periods for modular forms, Ann. Math. Qué. 37 (2013) 109-128.
[32] J. L. Waldspurger, Sur les coefficients de fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (4) (1981) 375-484.
[33] A. Yamagami, On p-adic analytic families of eigenforms of infinite slope in the p-supersingular case, Acta Humamisitica et Scientifica Universitatis Kyotiensis Natural Science Series no. 41 (2012) 1-17.

[^0]: Email address: kenji_m@cc.kyoto-su.ac.jp (Kenji MAKIYAMA)

