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Abstract
Let f be a holomorphic cusp form on U(1,1). In this paper, we study the
standard L-function of f and show its functional equation under certain conditions.
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1 Introduction

Let f be a holomorphic cusp form on U(1,1). In this paper, we study the standard
L-function of f and show its functional equation under certain conditions. The proof is
based on the method of Shimura ([Sh2]).

We explain our results in a classical formulation in the simplest case. Let K be an
imaginary quadratic field of discriminant D with |D| > 4. For simplicity, we assume that
D is odd and the class number of K is 1. Let £ be a positive integer divisible by wg, the
number of roots of unity in K. Let

1) = Y clm)eme

D
be a holomorphic cusp form of weight ¢ — 1 and character <*) on I'y(|D|). The L-

function of f we are concerned with is given by
L(f;s) = ¢(29)> c¢(Na)a'Na ¢+

% H(l — ) (1 _ C(T)ng—s—EH)’l 7

p|D
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where a = (a) runs over the nonzero integral ideals of K and, for p | D, II,, is a generator
of the prime ideal of K dividing p.

Theorem Suppose that f is a Hecke eigenform with c(1) # 0 and an eigenform of Atkin-
Lehner operator at each p | D. Set

L*(f;s) = 2m) D" I'(s + I (s + € = 1)L(f35),

where I'(s) is the gamma function. Then L*(f;s) is continued to an entire function of s

on C and satisfies

L*(f;s) = L*(f;1—s).

The result in a general case is stated in Section 4 in an adelic formulation. The main ingre-
dients of the proofs are the Rankin-Selberg convolution and the local theory of Whittaker
functions.

The paper is organized as follows. In Section 2, we prepare some notations used
throughout this paper. In Section 3, we recall the definitions of cusp forms, Hecke opera-
tors, Atkin-Lehner operators, automorphic L-functions, theta series and Eisenstein series
on U(1,1). We also calculate the Fourier coefficients of the Eisenstein series. It is to be
noted that a similar calculation was made by Shimura ([Sh2]) in a much more general
situation. The main results of this paper are given in Section 4. In Section 5, we study
the local and global Whittaker functions. Using the Rankin-Selberg convolution together
with the results in Section 5, we give proofs of our results in Section 6. We state the
classical interpretations of cusp forms in Section 7. Finally, in Section 8, we present an
example.

2 Preliminaries

2.1 Notations

As usual, Z, Q, R and C denote the ring of rational integers, the rational number field,
the real number field and the complex number field respectively. We write i for /—1. For
a ring R, R* denotes the group of all invertible elements of R. Let Z, and R, denote
the set of positive rational integers and that of positive real numbers respectively. For a
set S, charg stands for the characteristic function of S. For a prime v of Q, Q, denotes
the completion of Q at v. For a finite prime p, Z, denotes the p-adic integer ring. We put

Z; = H Z,. Let Q4 denote the adele ring of Q. For z € Qa, let =, be the v-component
p<oo
of x for each prime v. For a prime v, | - |, stands for the absolute value of Q. For v = o0,



On analytic propertics of L-functions attached to cusp forms on the unitary group of degree two 107

we often write | - | for | - | . For z = (z,), € Qj, let 2], = H |z, |, be the idele norm
v<00
of . For a finite prime p, we normalize the additive valuation ord, : Q, — Z so that
ord, p = 1. In this paper, we fix an imaginary quadratic field K of discriminant D with
integer ring Ok. We only consider the case of |[D| > 4. Then we have wx = 2, where
wp 18 the number of roots of unity in K. Denote by ¢ the nontrivial automorphism of
K/Q. For z € K, let Tr(z) = z + 2 and N(z) = 22°. The complex conjugate of z € C
is denoted by z. For a prime v of Q, let K, = K ®q Q,. For a finite prime p, we put

Okp = Ok ®z Z,. We set Ok 5 = HOK’P' We denote by K and K4 ¢ the adele ring
p<oo
of K and its finite part respectively. For a = (a,), € K4, put |al|, = H lla||,, where

v<00

laull, = [N(a,)|,. We put K' = {t € K*; N(t) = 1} and Ok ; = K} ;n Oy, = [[ Ok,

p<oo
where Of , = KN Ok - When p ramifies in K/Q (namely p | D), we fix a prime element
IT, of K,. When p splits in K/Q, we fix an identification between K, and Q, & Q,, and
put 1,1 = (p, 1) and I = (1,p).

2.2 Characters

Let X be the set of Hecke characters xy of K satisfying X|Qj§ = w, where w denotes the
quadratic Hecke character of Q corresponding to K/Q by class field theory. For x € X,
let wo(x) be the integer such that X(ze) = (2e0/ |200])¥=X for z,, € C*. We fix an
element xq € X such that we(xo) = —1. Let v, be the additive character of Q, given by

e?ﬂ'iz (’U — OO),
¢v($) = {6—2771'{50}1, (1) _ p)7

where {z}, denotes the fractional part of z € Q,. Then ¢ = va is a nontrivial
v<o0o

character of Q\Qa. We put ¢, = 1, o Tr.

2.3 Unitary group

Let H = U(T) be the unitary group of T = <1 1). Namely

HQ = {h S GLQ(K), 'hoTh = T} .
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n() = (1 f) d(y) = (yo y_l), m(z) = C« 1)

and S:<_1 1) (xeQ,ye K*, z€ Q).

We put

Define subgroups of H by

N={n();z2€Q}, Z={a-I;ae K'},
P={n(x)d(y); 1€ Q,y e K*},

where [ is the identity matrix of degree 2. We denote by Hq (resp. H,) the group of the
Q-rational (resp. Q,-rational) points of H. Let Ha be the adele group of H and Hy s
the finite part of Ha. For a finite prime p of Q, let U, = H, N GLy(Ok,) and Uy(D), =

{(CCL b) €Uy ce DOK*p}' Note that Uy(D), = U, unless p | D. We put Uy = [ 1,

d
p<oo
. . az+b
and Uy(D)y = HLIO(D)p. Let Uy, = {h € Hy; h (i) =i}, where h(z) = d for
cz
p<oo
= <CCL 2) € Hy and z € $ = {z € C; Im(z) > 0}. For h € Hy, and z € §, we define

the automorphic factors by j(h,z) = cz +d and J(h,z) = (det h)~j(h,z). Let xo, be
the character of Uy(D), given by

w (2 0) - oo on

Then Yo = H Xo,p defines a character of Uy(D);.

p<oo

2.4 Measures
Let dx, be the Haar measure on Q, normalized by / dzx, = 1. Let dzs be the usual
zZ,
Lebesgue measure on R. Then dx = H dx, is the Haar measure on Qa with / dx =
v<o0 Q\Qa

1. Let d*z, be the Haar measure on Q, normalized by / d*z, = 1. Let ¥z =
z;

1 . .
|Zoo| " dToo. Then d*x = H d*z, is the Haar measure on Q. For each prime v of Q,
v<o00

let dy, be the Haar measure on K, self-dual with respect to the pairing (x, y) — g, (zy7).
Note that / dy, = |D|;/2 if v = p < o0, and that dy, is twice the usual Lebesgue
K,p
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measure on C. Then dy = Hd%, is the Haar measure on K with / dy = 1. Let

v<o00 K\Ka

d*y = deyv be the Haar measure on K4, where d*y, is the Haar measure on K¢

v<o00
normalized by / d*y, =1if v =p < 00, and d* Yoo = 27" N(Yoo) " 'dyeo. For a prime v

K,p
of Q, we normalize the Haar measure dh, on H, by

[ royin, = / z, /K . /u 7))

where du, and du., are the Haar measures on U, and U, normalized by / du, =
Z'{O(D)p

/ dus, = 1, respectively. Then dh = H dh, is the Haar measure on Hy.

v<o00

3 Definitions

3.1 Cusp forms

Let ¢ € Z with wg | . A smooth function f on Hg\Ha is called a cusp form onUy(D)y
of weight £ — 1 with character o if the following conditions (1)—(4) are satisfied.

(1) flhusus) = Xo(up)J (Uoo, ©)*Cf(R) (h € Ha, up € Up(D)y, oo € Uso).

(2) For every hy € Hpy, the function famp, 1 9 3 heo (i) — J(hoo, i)' f(hoohy)
(heo € Hoo) is holomorphic.

(3) For every hy € Ha g, famn, is holomorphic at ioco.

(4) / f(m(z)h)de =0 (h € Ha).
Q\Qa

We denote by Sy_1(D, xo) the space of such functions. Let ), be the set of characters Q
of K} /K" satisfying Qlor, , =1 and Q(2s) = 2t for z,, € CL. For Q € Yy, we put

Se-1(D, x05 X02) = {f € Se-1(D, x0); f(th) = (xoQ)()f(h) (t € Kx, h € Ha)}.

Then S¢—1(D, x0) = D Se-1(D, xo; Xof2).
Qe
For f € Si_1(D, xo; x0f2), we define the global Whittaker function W; attached to f

by

Wi(h) = /Q R s (e Ha)
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It is easily seen that

Wy(tn(x)huus) = (xo) (£)t(2)Xo(ug)J (oo, 1)~ W (h)
fort € Ky, x € Qa, uy € Up(D); and uy € Uno.

3.2 Hecke operators and Atkin-Lehner operators

Let f € Sy 1(D, xo; xof2). For each finite prime p, we define Hecke operators as follows.
(i) Suppose that p is inert in K/Q. Then we put
Tf(h) = —f(hd(p™) = > flhm(p'z))— > f(hn(y)d(p)).

T€Z, /Ly yEZy/p?Zy

(ii) Suppose that p ramifies in K/Q. Then we put

T () = x0p(IL,) " > f(hA(Da)d(ILY)) + xop(IL,) > f(hn(y)d(IL,)).

x€Zp/PZyp yGZp/pr

(iii) Suppose that p splits in K/Q. Then we put

Toaf(h) = xop(p) 'S f(RA(IL )+ > f(hn(z)d(I,2)) ¢,

z€Zy /pZyp

Toaf(h) = xop(lp2) ™' f(RAL3) + Y f(hn(z)d(IL,1))

x€Zp/pZyp

Remark 3.1 Note that Sy—1(D, xo; x0f?) is invariant under Hecke operators, and 7,»f =
QI0,2/11,1)7,1 f for p split in K/Q.

We say that f € Si_1(D, xo0; x0f2) is a Hecke eigenform with eigenvalues {A,} (A, =
(Ap1,Ap2) € C%if psplits in K/Q and A, € C if p does not split in K/Q) if, for every
p < oo, T,f = A,f in the non-split case and 7,,;f = A,,;f (7 = 1,2) in the split case.
Note that A, 5 = Q(II, /11, 1)A, 1 in the split case.

VD'

For each prime factor p of D, we put wp, = ) € H,. We define the

Atkin-Lehner operator §p, by
(Sppf)(h) = f(hwp,)

for f € Si_1(D, x0; x082) (cf. [A-L]). Then f +— §p,f defines an involution of Sy_1 (D, xo; X0f2)
commuting with Hecke operators and the eigenvalues of §p, are {£1}.
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3.3 L-function

Let f € Se—1(D, x0; x0f?) be a Hecke eigenform with eigenvalues {A,}. Let k be a positive
integer with wy | k and k > ¢, and let = a Hecke character of K satisfying

E‘O;f =1 (3.1)
and
Z(200) = (200/ |200])* (3.2)

for zo, € C*. Here 1 is the trivial character. We define the automorphic L-function
L(f,Z;5) by

L(f,5;s) = H Ly(f.Zps; )

p<oco

with s € C. Here the local factor L,(f,=,;s) is given as follows:

Lp(f> Ep? S)

(1+(1—p—A)S,(P)p 2 +5,(p)%p )" (p is inert in K/Q),
= s o \o _gg\ 1 -
= H (1 - Anj:p(np,j)p so1/2 4 Q(Hp,j/np,j):p(np,jyp 2 ) (p splits in K/Q),
j=1,2
1= AZ,(IT,)p~> 12 + Ep(l_[p)%f%y1 (p ramifies in K/Q).

3.4 Metaplectic representation and theta series

Let ¢, be a Schwartz-Bruhat function on K,. Let

@(2) = P VK, (ygz)spv(yv)dyv

be the Fourier transform of ¢,. We define the Weil constant A ,(¢,) by

/ 020 oo(N(z)) 2 = Ac(i) / Gz o(= N(2))dz

v v

(cf. [We2]). The following facts are well-known.

Lemma 3.2

(1) Aw(¥)? = wy(=1) for every v.
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(2)  For a finite prime p of Q, we have

) (p1D),
TP wp(pm o P, (pm o Pydt (p | D).

P

Ak p(thp) =

(3)  Axoo(thss) =i

(4) H)‘K,v(d]v) =1

v<o0

Let S(Ka) be the space of Schwartz-Bruhat functions on Ka. Let x; be an element
of X such that we(x1) = 2k + 1 and X61X1|o[§f = 1. It is known that there exists a

smooth representation M}, of Hx on S(K4) determined by

ME (d(@) p(X) = xi(a) 7 [|a]|{* p(aX) (a€ K),
ME (n(b) p(X) = d(ONX))p(X) (b€ Qa),

M; (So) p(X) = Arw(th) VK, (YUUXU)@(K,X(”))dK} (v < 00).

Ky

Here S, € H, and X® = X,. We call MZT the metaplectic representation of Hy.
X1

v'#v

Let o = @ o0 € S(Ka), where
v<o0
9007p(Xp) = Cha’rOK,p(Xp)7
Po00(Xoo) = XE exp(—2m|Xof).
It is known that
T _ m(up)%,p (U =p <00, Up € Z/{O(D)p)y
MXl () o0 = N —k—1 _
J(Uoo, 1) Voo (U =100, Usy € Us).

We define a theta series by

Opi(h) = > MY (h)po(X).

XeK

Then 6,, € Si41(D, x0)-
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3.5 Eisenstein series

In what follows, we fix an Q2 € ). Let £ be the Hecke character of K given by

£(2) = (xoxi ' E)(2)Q2/27) (2 € KR). (3:3)

Note that §|OX =1 and £(200) = (200/ |200|) FH72 for 2o, € C*. For s € C, we define
an Eisenstein series by

Ey—i12(h, E; s) Z Oh-e+2(Yh;s) (k= 1),

YEPQ\Hq

where
Or—t12 (n(b)d(a)u}cum; s) =¢&(a) ||a||; J (s, Z-)—k+é—2

for a € K5, b € Qa, uy € Uy and usx € Us. The series Ejy_pi0(h,Z;s) converges
absolutely and uniformly for (h,s) € C' x C’, where C' (resp. C”) is any compact subset
of Ha (resp. of {s € C; Re(s) > 1}). Note that

Ey—era(Ythustiss, 55 5) = §(7)J (oo, ) ™72 By (h, Zs )

for v € Hq, t € K}, us € Uy and us € Us.

T

Proposition 3.3 Let P.(s) = H(s +r—j). Put
=0

B yio(h,Z58) = 7 I(8)C(25) Pe—0)/2(8) Er—e42(h, Z; 5).

Then Ej;_, 4(h, Z; s) is continued to an entire function of s on C, and satisfies a functional

equation
By ol Zis) = Ef_y 5(h,E1 —s).

Proof. We first prepare for the proof of this proposition. For simplicity, we write k = k—/.
Put G(s) = n=%/2I'(s/2)¢(s). The function G(s) is holomorphic on C except for s = 0
and s = 1, and has a functional equation G(s) = G(1 — s).

By the definition of £, we have the following. Since H € p(’)X for p | D, we have

&(0,)% = &(p). The equation 1 = £(p) = &x(p)ép(p) = fp( ) lmphes that gp( ) =1
for all p. Moreover we have £(a?)™' = £(a) for a € K since £(N(a)) = Z(N(a)) and

N(a) € Qz = QR[] 2.

p<oo
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We define the classical Whittaker function W, ,(z) by

672/2’2#4»1/2

I'lp—v+1/2

Wy,“(Z) _ ) / e—zttu—y—l/2(1 + t)u-‘ru—l/th
0

for v, p (Re(p —v+1/2) > 0) and z € C (Jarg(z)| < m). It is well-known that W, ,(2)
is continued to an entire function of (v,u) on C?, and satisfies a functional equation
Wi (2) = Wyu2).

We now calculate the Fourier coefficients of E,o(h, E; s):

Eli+2 h y =3 S ZE5+2 E? 8):

meQ

where
B9 = [ v(emo) Eusan(o)h, 5 ).
Q\Qa

From now on, we fix an h = n(b)d(a)usu. € Ha (b€ Qa, a € K4, uy € Uy, U € Us).
By the Bruhat decomposition Hq = Pq U PQSNq, we have

E(m%h75;s = —ma wro(n(z)h; s wr2(Sn(x +1)h;s) p dx
(0, s ) /Q\QAM >{¢+<<> )+ 3 pelSnta 41 )}

= ¢n+2(h;5)/ P(—mx)dx
QA\Qa
Lo St mle & (Sl 1)
= Omobnsa(l;s) + 1™ (hys),

where 4, is the Kronecker’s delta and

1 (h;s) = Y(—ma)pi2(Sn(2)h; s)dx.
Qa

Since
I(m)(n(b)d(a)ufuoo; s) = (mb)J (Uso, i)fﬂ*ZI(m)(d(a); s)

for b € Qa, a € K5, uy € Uy and us € UDO, we only have to consider 1™ (d(a); s)

(a € KY). Decompose 1™ (d(a); s) as 1™ (d HI(m
IM(d(a,);8) = [ u(=ma)dura(Sym(z),d(a,); s)da.

Qv
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M+p
For m € Q and M € Z, put u = ord, m and R,(m, M;s) = E p(=2+1n 4t a finite prime
n=0
p.
PR x o . A X . .
Suppose that p is inert. For a, € K5, put ordga, = Aif a, € p O, It is easily
seen that

L™ (d(ay); s) . bem)& e [l do

2

/ ¢( mx)ﬁp( A— ord,,:c HpA ordpaLH dx
Qp—p?4Zy

= &P p(—ma)de
pZAZP
2A-1
+6m) P Y G / Uy (—mp"z)dz
If m =0, we have
19(d(a,):5)
2A-1
_ gp(p)—Ap2A(s—1) +£p(p)A( — —2As Zé -n (23 1)n

n=—2A+1

= &(p) e {1+§p(p)2A(1 —php Ay Y gp(p)np<—zs+1)n}

1+ &)1 —p- *25“26 yrpl2etn }

= &p) ey {1 + &)1 —p p P (1= &pp ™) 1}
D (1 g ) (1 ).

If m ¢ p~24Z,, we obtain
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If m € p~247Z,, we have

" (d(ay): 5)

p
— fp( ) A 2A(s 1)

2A+p
_gp(p)A+u+1p—2AS+(—28+1)(u+1) { Zi -n (2s n }

= &(p)p*eY [1 — &y(p)PAtitlp(T2e @A+t

1=&(p)~'p>!

= &) P (1) ™) -1
(1 = &(p)” ! 23)( —&(p )2A+N+1p(—28+1)(2A+u+1))
= &) P (1=t
x (1= &(pp) (1 - §p(p)2A+’L+1p(*25“)(“+ﬂ+1))
= & (p)ApHAD (1 - &)%) Ry(m, 24; 5).

1— —2A—p—1,(2s—1)(2A+p+1)

Hence we see that

P —p ) T (1= p) - (m = 0),
I™(d(ay); s) =  pPAED (1= p %) Ry(m,24;5)  (m € p> ),
0 (m & p=*1Z,),
where A = ordg a, and p = ord, m.

Suppose that p ramifies. For a, € K, put A = ordk q, if a, € Hﬁolx(’p. It is easily
seen that

Izgm)(d(ap),s) = / dlp —mx gp ||H A|| dr
/Q o 1/} ( mx)gp(H;?fQordpx) HH‘;[fQord,,zH:dx

= gp(Hp)_ApAs Yp(—mz)dz

pA Zy
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If m = 0, we have
19(d(a): )

_ fp(Hp)_ApA(s_l) ( )gp A —As Z fp (—2s+1)n

—A+1

_ gp(Hp)prA(sfl) {1 ( p 2 72s+125p —2s+1)n }

= fp( ) A Al ( 513( )2 _%H) (1_£p< )2 _28)~
Ifm¢g p‘AZp, we obtain

Ifme p’AZp, we have
Iy (d(ay); )
= fp( ) 4 A(é 2

A+p
_gp(Hp)A+2u+2p—As+(—2$+1)(u+l){ Z€ —2n (23 1)n }

= gp(np)—A A(s—1) ll 7513( )2A+2u+2p(—2s+1)(,4+u+1)

(A+p+1) ) (25—1)(A+p+1)
x{l—(l—P Y fp(l)_gp( )127231 }]

= 5P(Hp)7ApA(S b (1—§p( )2 *25)
(1*51;( »)°p _23“) ( (Hp) (A+pt1),, 25+1)(A+H+1))
gp( )—A A(s—1) (1 75}) p 23) Rp m, A S

Hence we see that

&)~ pAe (1= p 2 )T (1= p™)  (m =0),
L™ (d(ay);8) = § &(I,)ApA=D (1= p™) Ry(m, A;s)  (m € pIZ,),
0 (m ¢ p‘AZp),
where A = ordg a, and p = ord, m.
Suppose that p splits. For a, € K, put A =ordga, =a; +azif a, € HZHH;?QOIX(@
It is easily seen that

1™ (d(ay); )
= &(I0) " "26,(TL, ) " p™ Yp(—ma)dz

PZP

+& (1) " & (T 2) p A Z &(p p*” 1)"/Zx¢p(—mp”:c)dx.

n=—oo 'y
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If m = 0, we have
19(d(ay); )

p

= ‘gp(HpJ)iazgp( )ﬂllpA(Sil)

X{l ( )gp( A —A(2s—1) Z gp —2s+1)n }

—A+1

= &(p1) & (I,0) pAtY {1 +(1 - *25“25 np(=2s+0)n }

= gp(Hp,l)7a2§p(Hp,2)7a1pA(571) (1 - gp(p)p72s+1) (1 - gp(p)pi%) .
If m ¢ p~*Z,, we obtain
Izgm)(d(ap); s) =0.
Ifme p’AZp, we have
I;(;m)(d(ap)§ s)

= gp(Hp,l)7a2€p(Hp,2)7alpA(571)
A+p
1— gp(p)A+u+1p(—25+1)(A+p+1) {1 pr 25 1)n}‘|

&p(I1) 726, ()~ p ™) (1= &, (p)p ™)
X (1= &) 7 (1= g o) pl )
€p(HP,1)_azgp(npﬂ)_alpA(s_l) (1 - 51)(17)]0_23) Ry(m, A; s).
Hence we see that
™ (d(ay); 5)
&(TL,1) &, (I, 2) "D (1= p~2 ) (1= p~2)  (m = 0),

= 519(1_[1)71)7a25p(Hp,2)7a1pA(571) (1-p%) Ry(m, A;s) (m € piAZp)a

0 (m & p~2Z,),

where A = ordg a, = a; + as (a, € II;LT%50K ) and = ord, m.
Let v = 0o. The Iwasawa decomposition of Sen(2)ocd(d) = 1(X)d(Y )0, where

T Goo

= T T 9 . N2 Y T
22 + N(aw)? x + N(aoo)i

oo = (2 + N(ao0)i) ™! <_ N(a0) N(—a;)>

implies that
I(m)(d(aoo); s) = (_1)fi+2asfﬁ/271@s+n/2+1

X/ 727mm:r(x+N( )) s—K/2— 1(I__N(aoo)z')78+n/2+ldml
R
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Fory >0, a, 8 € C (Re(aw + B) > 1) and m € R, it is known that

/ e~ 2mmT (g i)~z — dy) Pda
R

Zﬂ—a 2a+5ﬂ.a+ﬁma+ﬁ—1

ermm (o) () F(q)(iﬂgil;f;’ﬁ) (m >0),
R I

jB—agatp atp |7n|0‘+ﬁ71
e2mlml (o) [(3)

D(dmym|; 5, 0) (m < 0)
(cf. [Miy]), where
O(z;A,B) = / e (u + 1) P du.
0

Using the notation of the classical Whittaker function W, ,(2), we get
@(Z; A, B) = 62/22_(A+B)/2F(B)W(AfB)/27(A+Bfl)/2(Z)-

Hence we obtain

/€2m’mz (.Z‘ + iy)*o‘(x — iy)iﬁdl’
R
ot 2y~ (82 (et 5=D/2 (o) 7!

X Wia—p)/2,(a+p-1)/2(4Tym) m > 9),
e ’Lﬁ a22 a- ﬁﬂ-yl o ﬁF(O[ + /8 B 1)1—‘(0[)71[—‘(6)71 (m - 0>7
e (@t 2y (k)2 |y | (HBD/2 P gy

X Wip—a)/2,(a+p-1)2(4Ty [m]) (m <0).
This equation implies that

I8 (d(as); 5)

00
k2 —kK/2—1—~kK/24+1
= 1 aoo/ Ao /

M (s + /2 + 1) 7 W jag1,s-1/2 (47 N(aoe)m) (m > 0),

I'2s—1) (m = 0)
I(s+r/2+ 1) (s —Kk/2—1) S
7 fml* (s — £/2 — 1) \W o 1.1 jo(47 N(aw) [m])  (m < 0).

X Cl aool 522 2.5

K/2—1
Note that I'(s + #/2+ 1) = Paja(s)I'(s) and I'(s — /2= 1) = ] (s —r/2+ )7 (s) =

(F) P = ) T(s) since DX 1) = XT(X).
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We now complete the calculation of E,(:L%(h, =;s). If m = 0, then we have

I(d(a);s) = &)™ flafly i 222 m((2s — 1)¢(2s) 7"
xI'(2s —DI(s+r/2+ 1) (s —K/2—1)""

= &(a) llallx " G2(1 = 8)) Peya(1 — 8)G(28) " Pojals)™

Here we use the fact I'(X/2)I"((X +1)/2) = 2=%/7'(X). Hence we obtain

ECL(hEis) = dusalhis) + TO(hss)
= &(a) llally J (oo, 1) "% + T (uns, §) 21O (d(a); 5)
= G(25) 7 Paja(s)"(0) ] (oo, 1) 2

x {llall}y G(25)Pojz(s) + llally " G(2(1 — 5)) Peja(1 — 5)} -

Suppose that m > 0. If (m N(a)), € Z, for each finite prime p, we have

1 (d(a); 5)
= i"Prmt (@) T T (s + K2+ 1)71¢(2s) 7!

X Wi ja41,5-1/2(47 N(aoo)m Hpordp N(@p)(s=1) HR m,ord, N(ay,); s)

p<oo p<oo

= G(25) " Popals) "% (a) llall IN(CLoo)m\S_1

X WI{/2+1 s— 1/2 47TN aoo HR m, OI‘d ) )

p<oo
Hence we obtain
EIETZ(h,E; s) = [(m)(h; s)
= (mb)J (tee, i) "2 (d(a); 5)

= G(25) 7 Poa(s) "1 (mb) J (uce, )2 2¢(a) [l IN(ace)m]

X Wiesai1,5-1/2(47 N(ao)m HR m,ord, N(a,); s).

p<co
In a similar way, for m < 0, we have
10 (d(a): 5
R T (@) T (s — R /2 = 1)71¢(28) 7
X W_yj2-1,5-1/2(47 N(as) [m) Hpordp I H Ry (m, ord, N(

p<oo p<oo

= G(28) " Popa(1 = 9)é(a) [lall " IN(aoo)m|*"
X W_pja—1,0-1/2(47 N(aoo) [m]) [ [ Ro(m, ord, N(a,); 5),

p<oo

= 1

s—1

ap); )
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if (mN(a)), € Z, for each finite prime p. Hence we obtain
Bl (hEis) = (mb)J(uee, )" 21 (d(a); 5)
= G(25) " P(mb)J (e, )" Pepa(1 = 5)€(a) [lal 5" IN(aoo)m[*
x W*H/2*178*1/2(47T N(aoo) [ml) H Ry(m, ord, N(ay); s).

p<co
Therefore we have the following. For s € C with Re(s) > 1, set
By 5(h, Z;s) = G(28) Peya(s) Eria(h, E; 5).

Put

C(a) ={n € Q C Qa; (nN(a)), € Z, for all p < oo}
for a € K5. Then the Fourier expansion of £} ,(h,=;s) is given by

Elo(hSis)= Y elh(hEss),
meC(a)

where

ey (h,Zs) = €(a)d (o, i) "2
x {llalli G(25)Puja(s) + lalls * G(2(1 = ) Puja(1—5)}  (3.4)

and

= £(a)J (use, )2 (mb) llal " [N(ace)m[*"
X H R,(m,ord, N(a,); s)

p<oo
P2 We o151 /2(47 Naso)m) (m > 0), (3.5)
PE/Q(S)PE/Q(]. — S)W_K/2_1,3_1/2(47T N(aoo) |m|) (m < O)

By (3.4) and (3.5), we see that E_ ,(h,Z;s) is continued to an entire function of s on C.
Note that E}, ,(h,=;s) has no pole at s =0, s =1 and s = 1/2. Since

Rp(m, M, 1 — S) _ p(]w-kord,[,771)(23—1)‘Rp(7n7 M, S)
for every finite prime p, we also have a functional equation
E:+2(h7 Ev 5) = E:+2(ha E7 1 - 8)'

This completes the proof. O
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4 Main results

We now state the main results of this paper. For f € Sy_1(D, xo; x0©2), we put

2(r50) - | o Tk cia(h 55, TR
Q\Ha

Let f € Si—1(D, xo; x0f2) be a Hecke eigenform with eigenvalues {A,} satisfying §p,f =
e, for each p | D. We put

Xo2(Ia) Wi (d(II;1)7(2))  (ordy D = 2, 5 = ixo2(VD)),

Wio = xo2(Ilo) ' Wi(d(Il;1)7(4))  (ordy D = 3), (4.1)
Wi(I) (otherwise)

and
&(f) = Wy
Ay (ordy D = 2, g5 = ix02(VD)),
X {A2 - \/iezx()g(\/ﬁ)AK,z(wg)fl} (ords D = 3), (4.2)

1 (otherwise).

Here 1(2) and m(4) are elements of Hq,.

Theorem 4.1 Let f € S;_1(D, xo; x0f2) be a Hecke eigenform with eigenvalues {A,}
satisfying Sppf = €pf for each p | D (e, = £1). Let = be a Hecke character of K
satisfying (3.1) and (3.2). Then we have

_ (_1)(1{,‘7[)/27.(.62% .
2(7.%55) = oy Wral (b +0/2+ 5 = 003 L Z 9 [[D,05:9),

p|D
where
Dy(f35)
epXo0.0 (VD) Ak (U)p* (p#2),
—p*° (p=2,0rd, D =2,
_ &p = —ixop(VD)),
Ap*2 (p=2,o0rd, D=2,
&p = ix0p(VD)),
(Apépx(},p(—\/E)AK,p(wp)p‘l/Q ~ 1) P12 (p=2, ord, D = 3).
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Remark 4.2 Note that ixo,(v/D) = +1 for p = 2 and ord, D = 2.

Corollary 4.3 Let f and = be as in Theorem 4.1. Put
L*(f,Z;5) = 2n)" 2 DT ((k—0)/2+ s+ 1) ((k+0)/2 45— 1)L(f,Z; 5).

If & (f) £ 0, then L*(f,Z;8) is continued to an entire function of s on C, and satisfies a

functional equation

L*(f,Z58) = L*(f,5;1 — s).

The proofs of these results will be given in Section 6.

5 Whittaker functions

5.1 Local Whittaker function

5.1.1 Definitions
Let p be a finite prime of Q. First suppose that p{ D. For A, € C, set

(1) W(tn(z)hu) = (xo2) ()1p() X0, (u)W (h)
Wy(Ay) =S W:H,—C; (teK), heHy, z€cQ,ucl(D),),
() T = AW

If p splits in K/Q, we replace the condition (2) above with 7, ;W = A, ;W (j = 1,2) for
A, = (Ap1,Ap2) € C2. Next suppose that p | D. For A, € C and ¢, € {£1}, set

(1) W(tn(z)hu) = (xo2)()¥p(z)X0,0(W)W ()
(te K, he Hy, x€Qyucl(D)),

(2) T,W = AW,
(3) W(hwp p) =¢g,W(h) (he€ H,)

We call W,(A,,) (or W,(A,,e,)) the space of local Whittaker functions.

Wy(Ap,ep) =4 W: H, — C;

5.1.2 Unramified case

First, we study the structure of the space of local Whittaker functions W,(A,) in the
unramified case (inert and split).
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Lemma 5.1 Suppose that p is inert in K/Q. For W € W,(A,), we have the following.

(1) suppW C Udi(pk)up.

k>0

(2) For k € Z, we have W (d(p*)) = {w(k) + p~tw(k — 1)} W(I) with

n
Zw’}:rﬂ_ (n>0),
= r=0

0 (n <0),

w(n)

where x4 are the roots of t* —p~2(1 —p— Ap)t +p 2 = 0.
(3) IfW(I) =0, then we have W = 0.

Proof. (1) Since W(d(p*)) = W(d(p")n(1)) = W(n(p*)d(p")) = 4,(p*" )W (d(p")), we
have W (d(p*)) = 0 if k < 0.
(2) We set F(k) = W(d(p*)). Since T,W (h) = A,W (h), we have

MpF(R) = =F(k=1) = F(k) Y 0™ "'2) = F(k+1) Y 4,0™y).
z€Z,; /pZy YEZp /p*Zp
For k > 0, we see
) 1 (k=0),
2€Zy /DLy p =7 YEZp/P*Zyp

It follows from (1) that

F(1) =p~2(1 = A,)F(0),
PRk +2)— (1 —p—A)F(k+1)+ F(k) =0 (k> 0).

Hence we get

F(k) = "= F1) -2 0. "= F(0)

Therefore we have

for all k € Z.
(3) is clear. O
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Proposition 5.2 Suppose that p is inert in K/Q. Then dimW,(A,) =1 and we have
Wo(Ay) = C- W),
where W is an element of W,(A,) given by
Wy (n(2)d(p")u) = vy(2)xop(uw) {w(k) +p~ w(k — 1)}

forx e Qp, k€ Z andu e U, We have
. _ _ _o,0\—1
S W) = (1+p7't) (1= (1 —p—A)p*t+p°t)
k=0

as a formal power series.

Proof. The assertions are easily verified. O

Lemma 5.3 Suppose that p splits in K/Q. For W € W,(A,), we have the following.

(1) suppW C U di(H’;hHg?z)up'

ki ko €Z
k1+k2>0
(2) For ki, ks € Z, we have
W (AT TT%)) = (xoS2) (I, 1 TL,2) 1 ws (ky + k)W (1)

with

n
Zxﬁ"’xr_ (n>0),
= r=0

0 (n < 0),

wi(n)

where x4 are the roots of t* — p~ xo,(I, 1) Ap it + p~ (xo2) (1,1 /11, 2) = 0.
(3) IfW(I) =0, then we have W = 0.
Proof. (1) Since W(d(II1T1E,) = W(d(IZATIS (1)) = W(n(ph=)d(I 1) =
U (PR W (d(TTE4 118)), we have W (d(ITYITES)) = 0 if &y + ko < O.
(2) We set F'(m,n) = W(d(I[;4117,)). From the assumption, it follows that

ApaF(m,n) = Xo,(IL, 1) F(m — 1,n) + xo0,(IL, 1) F(m, n + 1)¥(m + n) (5.1)
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and
F(m,n) = (XOQ)(H;%HPVQ)F(m —1,n+1), (5.2)

where

v = Y wmz{p =0

x€Zy/pZyp

From (5.1) and (5.2), we get
Ay F(m,n) = Xo)p(H;%)Q(HmH;%)F(m, n—1)+ Xo,p(H;&)F(m, n+ 1)¥(m+n).
This equation implies a recursion formula

Ap 1 F(m, —m) = xo,(IL,1)pF (m, —m + 1),
Xop(IL DpF (m,n +2) — Ay F(m,n + 1)
X0 (I, 2) QI I, 5) F(m,n) =0 (n > —m).

Hence we have

mern_ m
F(m,n) = {Xo_’p(ﬂp71)p_1/\p71+x+a: + }F(m, —m)

Ty — T Ty —
= wi(m+n)F(m,—m)
for n > —m. Since
F(m, —m) = (xo2) (I, 111,,2)" F(0, 0)
by (5.2), we obtain
F(m,n) = (xo) (TT; 11T,2) ™ w1 (m + n) F(0, 0)

for m +mn > 0, which proves (2). The third assertion of the lemma is clear. O

Proposition 5.4 Suppose that p splits in K/Q. Then dimW,(A,) =1 and we have
Wy(Ay) =C- Wy,
where Wz? is an element of W,(A,) given by
Wy (n(2)d(I4 % )u) = 4y (2) Xo,p(w) (xo2) (1L, 111,0)  wy (ky + k2)
forx € Qp, ki,ky € Z and uw € U,. We have
> Wil b
k1, k2=0

- o — o — — o — -1
= (1 —-Pp 1t1t2) H (1 _AP»J’XO’P(prj)Q(HpJHpJ)p ltj + (XOQ)(HMHPJ)]) 1t32')
j=1,2

as a formal power series.

Proof. The assertions are easily verified. O
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5.1.3 Ramified case

We next study the structure of the space of local Whittaker functions W,(A,,¢,) in the
ramified case. Note that (x1£)(y) = (xoZ)(y) for y € K¢ in this case. When p ramifies
in K/Q, we put

> aran (n>0),
r=0
0 (n < 0),

where 4 are the roots of t* — p~x0,(IL,) " At + p~xo0,(I0,) % = 0. Set 7, = N(II,).
Note that m, € pZ,;. When ord, D = 1, we put

A = XO-,:D(\/E) Z Up(D™ ™ wy ()

z€Z} /pZyp

= XO,p(\/E)\/f»‘K,p(lﬁp) (5.3)

The last equation follows from Ag,(¢,) = /B ' Z Up(p~ta)wy(p~ta) obtained by
a€Zy |pZy
Lemma 3.2 (2). Note that A, = £,/p.

Lemma 5.5 Suppose that p ramifies in K/Q and p # 2. For W € W,(A,,¢,), we have
the following.

(1) suppW C Udi( p U UN d(I1%)wp yUo (D),

k>0 k>0

(2) Fork € Z, we have

= {w(k) = xop(I) "'p ™ epApw(k — 1)} W(I)
and
W(d(IT,)wp,,) = €, W (d(IT)).
(3) IfW(I)=0, then we have W = 0.
Proof. Since D € pZ; in this case, we have

Hp = PpuO(D)p U PpSpuO(D)p-

(1) Since W(d(ITE)) = W(d(IE)n(1)) = W(n(rb)d(ITh)), we have W(d(IE)) = 0 if
k < 0. Tt is clear that W(d(Hk)wD p) =0if k <0.
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(2) Put Fy(k) = W(d(ITF)) and F_y(k) = W(d(ITF)S,). From the assumption, we have

ApW(d(Hk))
= Xop(I Z w(d )d(H ) + Xo,p(11 Z W(d (y)d(IL,))

z€Zy /pZyp yGZ,/pZ,
= Xop(I) Y W(n(mpy)d(IL5™)) + xo,(IL,) " W (d(IL} ™))

?JEZP/PZP
_ _ —n-1Dx -1
o) Y W(n( o an s, (70T DL L))
zGZ /P2y

This implies that

ApFo(k) = Xop(Ilp)Fo(k +1) Z @Dp(ﬂ']];y) + XO,P(Hp)ilFO(k -1)

YE€Zyp/pZyp

+Xop(I) ' Fa(k=1) D dy(mfD'a Yy (=7, ' D).

T€Z) [pZy

By the equations W (d(II¥)wp,) = £,W (d(I1%)) and wp,, = d(I1;1)S,d((115)"'v/D), we
obtain

Xop(—IL'VD)F_y(k — 1) = e, Fy (k).

Hence we have

ApFo(k) = Xxop(Ilp)Fo(k +1) Z U( py +X0p(Hp)71F0(k_1)

YE€Zp/PZp
+X0’p(_\/5)71€PF0(k) Z wp(ﬂsDilxil)wp(I)-
xGZ;f/pZ,,
Since
> wlr)=0 (k>1),
—-1,.— z /pZ
> UplmED e Yy (w) = T
v<2 /vy > (D ey (@) = x0,(VD) A, (k=0),
2€Z [pZy
we get

Fo(1) = —=x0,(I,) " 'p~ " {e,4, — Ay} Fo(0),
Xop(IL)pFo(k 4+ 2) — ApFo(k + 1) + xo,(IL,) ' Fo(k) =0 (k> 0).
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Thus
ak — 2k gkt — gkt
Fy(k) = —F——F(1) —azix.———1F(0)
e Ty — T

= {w XOp IT,)~ lpilgppr(k - 1)} Fy(0)
Therefore we have
{w — Xop(IL)" 1p715ppr(k - 1)} W(I)

for all k € Z.
(3) is clear. O

Proposition 5.6 Suppose that p ramifies in K/Q and p # 2. Then dimW,(A,,¢,) =1
and we have
W,(Ap,e,) =C - W)

p:ep?

where W) is an element of Wy (A, €,) given by

W;?,sp(n(z)d( ) ) = XOp {w XOp Hp)ilpilgppr(k - 1)}

and

Wy, (n(2)d(IL,)wp pu) = ety (2)X0, ()W, (d(IL))

forx € Qp, k€ Z and u € Uy(D),. We have

Z PEP
_ 1 _ 9 _ -1
= (1 _XO,p(Hp) lp lgpApt) (1 _ApXO,p(Hp) 1p 1t+X0,p(Hp) 2p 1t2)

as a formal power series.

Proof. The assertions are easily verified. O

Lemma 5.7 Suppose that p = 2 and ord, D = 2. For W € W,(A,,¢,), we have the
following.
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(1)  We have

supp W C | JN,d(IT5)Uo (D), U N,d(TT, 7a(p),Un( D),
k>0
U (Nod(IT)wp o (D),

k>0

(2) Ife, = —ixop(VD), then we have

W (d(IT;)n(p)) = 0
W(d(I)wp,) = eyw(k)W (1)

fork € Z. If e, = ixo,(VD), then we have
{W(d(ﬂ’;)) e

P?Xo0,(p) - PXo,p
W(d(I})wp,,) = &,W (d(1L}))

fork € Z.

(3) Ife, = —ixop(VD) and W(I) = 0, then we have W = 0. If ¢, = ixo,(VD) and
W (d(IT;YYm(p)) = 0, then we have W = 0.

»
Proof. In this case, we have wy[;,7x = =1, wyl11p2z, = 1 and
Hy = PUy(D), U Py(p)Uo (D), U B, Splho(D),y.
(1) Since W(d(IT})) = W(d(IT})n(1)) = W(n(r))d(I1})) = y(xf)W (d(II})), we have
W(d(IT})) = 0 if & < 0. Thus we also have W (d(IT¥)wp ) = 0 if k& < 0. We see that
W(d(yap) = -w (dae) (177 1)) = —winehdatm

Hence we have W (d(IT})7a(p)) = 0 if k # —1.
(2) We put Fy(k) = W(d(TI)), Fy(k) = W (d(I5)m(p)) and F_y (k) = W(d(I5)S,). Tt is
easily seen that

Xop(—TL,2VD)F_y (k — 2) = e, Fy(k), (5.4)
since wp,, = d(I1,2)S,d((115)~>V/D). Put m, = pa (o € Z). Then ¢, (p~'m, ) xo,(p7") =
Up(p~2a )wy(a™) = —i. Hence, from the equation

yae _ 1k by -p~'VD
W(d(IL,)n(p)wp,) = W (n(P m,)d(IL;)7(p) ( D p\@1>> ,
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we have
epFa(—1) = —ixo,(— VD) Fy(—1) = ixo, (VD) Fa(~1). (5.5)
It follows that Fy(—1) = 0 if £, = —ix0,(v'D). Now, by the assumption, we obtain
AW (d(IT;))
= xop(I) ™ Z W (d(IL)7(Da)d(I1, ) + Xo,(11 Z w(d )d(11,))

Xop(Il) ™ ( (I,™1) + X0, (IL,) W (d (Hﬁ’l)ﬁ(p)ﬁ(l?ﬂ; '-p)
+ Xo,p (Ip) W (d(TT; ™)) + o, (IT,) W () d(TT; ™))
Xo,p(Iy) " W(A(TT, ™)) + o, (TL,) ™' W (d(IT; " )7(p))
+ Xo,p (Ip) W ((TT5 ™)) + o, (T, )t () W (d(TT; 1)),

which implies

APFO(k) = XO,p(H )71F0(k_1)+X0p(H> F2(k_1)
+ Xop(IL,) {1 + ¥y (7h) } Fy(k + 1).

Similarly we have

AW (d(TT ’“)*(p))

= o) 3 W D)
r0p(TL) Y W AT m(p)m(y) T )
y=0,1
_ 1 -1 —PW;1 -1
~ )W (et >sp( )

+><o,p(Hp)1W( (—p'mh)d(IE S, (—wpl(p_Jr D) __11 ))

+ X0 (1) W (d(IL; )7 (pry)) + X0, (IL,) W ("(Wﬁ)d(nﬁﬂ) (1 . _pﬂ?))

= Xop(—1Lp) "W, (p )W (d(11E1)S,)
+ Xop(—I(p + D)) ehp(—p~ ' m)W (d(ITE71)S,)
+ Xop (L)W (d(ITET1)) + X0, (T, (1 — p)ﬁ/}p(ﬂﬁ)w (d(Ixth)

which implies

AR = (T {0075 el 7D >wp<pf17r,:l>}ﬂl<—2>
+ Xop(I1 {1+wp (1- W’p }FO
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We see that wy(1 —p) = w,(1 4 p~'D) = —1 and (7, ') = —1. Put 7, = pa (a € ZY).
Then wy(p) = wp(e). On the other hand, ¢, (p~'m, ") = p(p~%a™!) = —w,(a)i. Thus

Yos () {7 ) =B (p 7, D) | = wn(p) {—wp(a)i — wyl@)ik = —2i.

Hence we get the following:

ApFop(0) = XO,p(HP)_1F2(_1) + 2x0,p (1) Fo(1),
ApFo(k+1) XO,p(HP)_lFO k) + 2x0,(Ip) Fo(k +2) (k> 0),
ApFa(=1) = 2x0,(I1,) Fo(0) — QiXO,p(_Hp)_lFfl(_m-

We obtain

R(k) = = R1) —ae

from (5.6) and (5.7). By (5.4) and (5.8), we get

ApFa(=1) = 2x0,(T) {1 = iz x0,(VD) ™' } Fo(0).

Therefore we have

Fo(k) = w(k) Fy(0) — Ww(k CDB(-1) (k> 0)

Fo1(k) = =x0,(11,2VD) e, Fok + 2 (k € Z),
{&—ixos (VD) } Fo(-1) = 0,
A Fa(=1) = 2x0,(T) {1 = iz, 0, (VD) 7} Fo(0).

Note that &, = +ixo,(VD). If £, = —ixo,(v/D), then we have

A, 1
— (k) - ———
p*x0,(IL,) ) PX0,p(T1,)?

wian) - {

for all k € Z.
(3) is clear.
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Proposition 5.8 Suppose that p =2 and ord, D = 2. Then dimW,(A,,&,) = 1 and we

have

Wy(Apgp) = C- W;?,apa
where W, is an element of Wy(A,,,) given as follows:

(1) Ifep,= —ix(]yp(\/ﬁ), then

w(k) (h =1),
Wi, (n(2)d(IT;) hu) = 1, ()Xo, (1) X { 0 (h =mn(p)),
~ixop(VD)w(k) (h=wp,)

forx € Q,, k€ Z and u € Uy(D),. We have

= -1 — _9 _ -1
ZW]()),EP (d(H];))tk = (1 — Apxo,p(1L,) 1]3 t+ Xop(IL,) 2p 1t2)
k=0

as a formal power series.

(2) Ife,= iX07p(\/E), then

Wy (n(z)d(I1y)hu)
= Yp()X0p(u)
A, R S _
? (k) pXO,p(Hp) (k 1) (h 1)7
X XO,p(Hp) (h=n(p), k=
] Ay —Lw — =w
(VD) { Z20(8) = — =D} (= wny)

forz e Q,, k€Z and u € Uy(D),. We have

nge,)(d(ﬂl;j))tk = p72 (Ap - pXO,p(Hp)ilt)
k=0
X (1= Apxop(IL,) ~'p~ 't + X0, (IL,) 2p~'t?)

as a formal power series.

Proof. The assertions are easily verified.

-1
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Lemma 5.9 Suppose that p = 2 and ord, D = 3. For W € W,(A,,&,), we have the
following.

(1) We have

supp W C | N, d(IT5)Uo (D), U N, d(IT, *)7(p),lho (D),
k>0

U N, d(IL, )7(p?)plho (D) U Npd (L) (p* + p),lho( D),

U (N d (I wp plho (D),

k>0

(2) Fork € Z, we have

W (a1)) = { Sl = e = 1)} W, ),
W (d(IE)wp,,) = ,W (d(I1})),
W (d(IT,%)m(p)) = ,B,W (d(IL; )y (p?)),
W (d(IL,2)(p? + p)) = —iw,(1 + p)e, B,W (d(IT, )7(p?)),
where
B, = e ™/ *x0,(—p ' TL,VD) (5.9)
and
CP(AP) = Ap - XO,p(HP)_lapo(l - iwp(l + p)) (5-10)

(3) If W(d(IL;")m(p?)) = 0, then we have W = 0.

Proof. In this case, we have wp|1+p2z; = —1, wplipz, = 1 and
H, = P,Uy(D), U Pn(p)Up(D), U Pr(p*)Us(D), U Pyr(p* + p)Uo(D), U P,S,Uy(D),.

(1) Since W(d(IT})) = W(d(II})n(1)) = W(n(x})d(II})), we have W(d(IL})) = 0 if
k < 0. We also have W (d(I1} )wD p) =0if k <O0. For M, X € Z, satisfying MQX € DZ,
we see that

W(dIHR(M) = wy(1+ MX)W (d(n’;)n(M) <1_7;W]‘f§ 1_XMX>)

= wy(l+ MX)W(n(rkX)d(II}))n(M)).
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Then we have W (d(II5)7(M)) = 0 if ¢, (7 X) # w,(1+MX). This implies the following:

p
(2) We put Fy(k) = W(d(IT)), (k) = W(d(IG)m(p), Fi(k) = W(d(IL)m(p)),
Fy(k) = W(d(IL)7(p* + p)) and F_y(k) = W(d(II})S,). It is easily seen that

Xop(—IL*VD)F_y (k — 3) = ¢, Fy(k). (5.11)
We obtain
Uo(p ™', )Xo (=07 (115) VD) Fu(—1) = £, Fy(—2) (5.12)
from the equation

W(d<H§>n<p>wD,p>:W< () d(1TE () <(gf;_1(lj%)(pf) . @»

P

and we get
Uo((0” + )7, P xo0p (—(105) VD +p) (1) = g, F5(=2)  (5.13)
from the equation

W(d(I5m(p* + p)wp,)

= W <n((p2 +p) "' T)d(TE R (p?) ( —(I)"'VD(p* +p) ! ))

I,VD(p+ 1) (1 +p+pm, ') VD ' (p* +p)

respectively. By the assumption, we have

AW (d(1T}))
= Xop(IL,) ™" Y W(dI)m(Da)d(IL, 1)) + xo,(I1,) Y W(dl )d(11))
x=0,1 y=0,1
= Xop(IL,) " W(A(IL™)) + X0, (L)~ W (d(IL, )@ (p* (D, ' — p?)

+ X0 (IL) W (A(TE)) + X0, (IL,) W (n(xh)d(ITE)).
This implies that

ApFo(k) = xop(I1,) " Fo(k — 1) + Xop(Ip) " Fy(k — 1)
+ Xop(IL) {1+ ¢p(7h) } Fo(k + 1). (5.14)
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Similarly, we obtain

MpFa(k) = Xop(L) {1+ w,(1— p*)y(mh) } Fo(k + 1)

+ X0 (I) ™' Fa(k — 1) + X0,(IL,) " Fo(k — 1) (5.15)
from the equation
AW (d(II ’“)f(pQ))
= op(II Z w(d )i (Dx)d(IL "))
+ Xop(ITp) Z W (d(TT;)m(p*)n(y)d(IL,))

= Xop(IL) WAL R(p*1, 1) + X0, (1) " W (AL 7A(T, (v° + D))

B 1 _ 27r’1
+ X0 ()W (I )7 () + xo,0 (1T, W (n(wﬁf)d(ﬂ’;“) ( A )) -
by +p?
Since m, € pZX and (1+p)~" € 14+p+p*Z,, we obtain 7% € p~>(1+p%Z,), tp(p~'m, %) =

e~/ and v, ((p® + p)'m, %) = —ie"™/*. Hence we have

Foa(k) = epxop(—T, VD) Rk +3) (k€ Z),

Fy(-2) = epe-”/mp(—p-lnpﬁw D,

Fy(=2) = —igye "0, (~TL,VD(p? + p) ) Fa( 1),

Fo(0) = 2 o, ()~ {8, = e ™/ 4x0,(=p~ VD) (1 = ity (1 + p)) | Fi(—1),

(—
)Fo(1 Fy(—
2x0p(p) Fo(k +2) = ApFo(k + 1) + xo0,(IL,) "' Fo(k) =0 (k > 0).

2X0,p(Hp Fo ) A FO( ) XOp( ) 1)
Since
W (I) = 27 xo,(TL,) ™ Gy (M) W (A(IT, H)7a(p))
and
W(d(I1,)) = 47 x0,,(TL,) 72 {A,Cp(A,) — p} W(d(TL, H)7a(p?)),
we obtain
ok — ok g1 kel
W(d(1Ly)) = ﬁwwmp)) - x+w7ﬁw(1)
A0 I S o
- { 2X0,p(Hp) w(k) 2X0,p(Hp)2 (k 1)} W(d(Hp )n(p ))
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Therefore we have

1
PXop(1Ly) pXO p( p)
(p)) = EpoW(d( Hn(p®)),
W(d(IL,*)n(p? + p)) = —iw,(1 +p)€poW(d(H_l)ﬁ(P2))-

(3) is clear. O

Proposition 5.10 Suppose that p = 2 and ord, D = 3. Then dimW,(A,,&,) = 1 and
we have

W,(A,,e,) = C- WP

PsEp?

where Wz?,sp is an element of W,(A\,,€,) given by

W, (n(x)d(I1})hu)

= Yp()X0p(u)
A P S )
p (AU;) pr,p(Hpi (k—1) (h=1),
. Ep {p'IU(k) — mw(k — 1)} (h = wD,p);
epXop(1,) By (h=n(p), k = —2),
—iwy(1 + p)epxo,p(1Ly) By (h=n(p*+p), k= -2),
Xo.p(11p) (h=n(p?), k=—1)

forz € Q,, k€Z and u € Uy(D),. We have

Z psp = 71 {C XOP(H )71t}

- o 1,01
X (I*APX(LP(Hp) T X0 (IT,) 2p 1t2)

as a formal power series.

Proof. The assertions are easily verified. O

5.2 Global Whittaker function

In this subsection, we study some properties of the global Whittaker function W attached
to f € Se—1(D, Xo5 X02).
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Proposition 5.11 Let f € Sy_1(D, x0; x02). For every hy € Ha 5, we have
Wi(d(r)schy) = r 1 Wy (hy) - (r € Ra).

PT’OOf. For hf c HAyf, set fdm,hf(hoo <Z>) = J(hoo,l)lilf(hoohf) Then fdm,hf(hoo <Z>) is
holomorphic on $. We have

W(d(r)ochy)
- / () f(n(2)d(r)shy)d
Q\Qa

= / (=) T (n(200)d()o0s )™ fam ey (P(To0)A(7) oo (i) .
Q\Qa

Now, for every hy € Ha s, we can take N(hy) € Z, such that h;ln(N(hf)f)hf € Uy(D)y
and Xo(h;'n(N(hs)f)hys) = 1. Hence we obtain
fdm,n(a:f)hf("(N(hf)oo)hoo (1))
= J(M(N(hy)oo)hoo, ) F(R(N(hy)oc)hoore(25) p)
= J(hoo, )" f(hoon(=N(hy) )me( ) hs)
= J(hoo, )7 f(hoon(zg)hy)
= Jamnpng (hoo (1)).

Thus the function fdm,n(xf)hf has a period N(hy) € Z,. Therefore we have the Fourier
expansion

P ) = Sy (20, )

meZ

From this, we obtain

Wf(d(r);ihf) -
- Nrfh,le) m%ex" < szzf) m)
X /ON(hf)d%o/Zfdef exp (27rixoo (N(Tzf) - 1)) Yy(=xg)e(f,n(zs)hs;m),

where ¢y = pr. Since

p<oo

[ e (o (s 1) e = {0 (N0

>_c(fn(zp)hyim) exp <W )

meZ
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we get
Wi(d(r)schy) = 1" te7>™ ; Vr(=zg)e(f,n(zs)hy; N(hy))dey.
f
This equation implies
Zfl/}f(—xf)fi(f, n(zs)hy; N(hy))day = e W (hy),

and we have

Wi(d(r)schy) = e IW (hy).

Proposition 5.2, 5.4, 5.6, 5.8, 5.10 and 5.11 imply the following result.

Proposition 5.12 If f € Si_1(D, xo0; x0of?) is a Hecke eigenform with eigenvalues {A,}
satisfying Sppf = epf for each p | D, then we have

Wi(h) = J(heo, i)' 0w T TWP () [ [ Wy
D q|D

for h = (hy), € Ha, where Wy is defined in (4.1).
6 Proofs of the main results
In this section, we prove Theorem 4.1 and Corollary 4.3.

Lemma 6.1 Let f € Se—1(D, x0: x0f?) be a Hecke eigenform with eigenvalues {A,} sat-
isfying Sppf = epf for each p | D. Then we have Z(f,Z;s) = Wf72HZU(f,E;s),

where =
Z,(f,Z;s)
[ O 0) NGl e O T, (0= o),
] 000 NG W s ), (v=p.pt D)
/K &y, /u Kz
(1€) () INCwp) 5712 W, (dlyp)up) M, ()00, (3) (v=p,p| D),

and Wy is defined in (4.1).
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Proof. By unfolding the integral, we have

Z(f,Z;s)
- / Oraalhs 5) F (1), (W)
PQ\Ha

/ dz/ e dxy/ duf/ Ao

EW) Il T (o, 1) 2 f(n(2)d(y)usun) > ME (n(z)d(y)u e po(X)

XeK
= / dx/ dxy/ duy
Q\Qa KX\KX Uy

> a8 )yl (=2 N(X)) f (n(w)d(y)u) ME, (ur) 0o (yX).

XeK

Since f € Sp_1(D, xo0; X0f2), we see that

/ B2 N(X)) f(r(z)d(y)ug) MT (ay)o(yX ) dc
Q\Qa

— M (a))p0(0) / F(n(z)d(y)u)de
Q\Qa
= 0

for X = 0. Moreover, for X € K*, we obtain

fn(z)d(y)us) = f(d(X)n(z)d(y)uy) = f(n(zN(X))d(yX)uy).

Hence we have
/ dx / d*y / dug
Q\Qa KX\Kx Uy

7 0a®)®) ylla v (—2) f(n()d(yX )up) MT, (ug) o (yX)

XeKX

/ d*y /ufduf 3i) () 12 Wy g ME () o).

Z(f,Z;s)
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Therefore, by Proposition 5.12, we obtain Z(f,Z;s) = Wy, H Z,(f,Z; s), where

v<00

Z,(f,E;5)
/ (X16) (Yoo) IN(yoo) |2 Tt Le 27N =) 0 (Yoo )d¥ Yoo (v = 00),

o) NG W o (v=p,p1D).

&) (yp)
/K @y /dup

(1) (yp) IN (yp)|8 12 W;?,sp(d(yp)up)/\/l%l (tp) 0. (Yp) (v=p,p| D).

‘@><

Lemma 6.2 For v = oo, we have

7T€27T

Proof. Since (1€) (Yso) = Y5 [yoo| ™~ and 0000 (Yoo) = Toote 2 =I", we have

Zoo(f7 =; 5) = 6277/ N(yoo)(k+z)/2+5—1e—4ﬂ'N(yoo)dxyoo.
C><

Put ¥ = re” (r € Ry, 0 < 0 < 27). Since d*yoo = 27 N(Yoo) dyoe = r~1drdf), we
obtain

Zoo(f7 E, S) — 27_‘_627r/ (TQ)(k+€)/2+5716747rr27,71d,r

0
me o0
- = (k+0)/2+s5-2 ,—t
= (47T>(k+€)/2+sl/0 ¢ e dt
2

me
= Gomme L+ 0/2+s-1).

Lemma 6.3 Suppose that p is inert in K/Q. Then we have

Zp(fv 5 5) = (1 - Ep(p) _26) (fv s )
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Proof. Since wy[zx =1, we have

Z,(f,Z58) = Z/OX (x1&) (" y») |N(pnyp)‘;_l/2 W;())(d@nyp))dxyp
n=0 K,p

[e.e]

= S W) [ X)),

n=0 OK,p
e}

= > ad) @) TIWdP™).

n=0

Since (x1£)(p) = wp(p)=,(p) = —Z,(p), Proposition 5.2 shows that

Z,(f,5s) = (1+0a)@pr ™) (1- (1 -p—A)0aO@Ep ="+ @) ™) "
= (1-S,mp ) Ly(f,

=, 9).
O
Lemma 6.4 Suppose that p splits in K/Q. Then we have
Zy(f,Z58) = (1 - Ep(P)pi%)Lp(fa Epi ).
Proof. Since wy|qx =1, we have
Z,(f,Z;s)
— ni TN ni N s—1/2 ni N
= 33 [ ) NI WAL Ty,
n1=0n9=0 OK,p
- Z Z(Xlé)(nﬁllﬂz,%)p(n1+n2)(8I/Q)Wl?(d(HZ}lHZ??))/OX Xl,p(yp)Xo,p(y;)dep
n1=0n2=0 K,p
= DD Caé) (I Is)p ) AW (T TTS)).
n1=0n2=0
Since (x1€)(IL,;) = X0, (IL,5) 21, /117 1)Z,(10,, ), Proposition 5.4 shows that
Zp(fa Ev 8)

= (1=(dmp™)
X H (1 - Apu‘(Xaleg)(Hp,j>Q(l_lgty,j/l_[p,j)]’f#l/2 + (le) (Hp,j)Q(XOQ)(Hg,j/Hp,j)p72s)7

=12
= (1=Z,0)p *)Ly(f. Zp; 5).

1
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Lemma 6.5 Suppose that p ramifies in K/Q and p # 2. Then we have
Zy(f,Ess) = EPXOVP(\/E)AK,p(wp)Ep(Hp)_lps (1 - Ep(p)p_zs) Ly(f, Ep; ).
Proof. We have

Uy = H n(ap)Splho (D) UUs(D),.

ap€Zp [pZyp

This implies that
Zp(fa 57 8)
= [ aB) NG WL, () s )0,

P

+ Z /KX (X0=)(Yp) |N(yp)|;_1/2 W,gep(d(yp)"(ap)sp)/\/l§1 (1(ap)Sp)Pop(Yp)d™ Yp.

ap€Zp/pZyp

Since Wz?,ep (d(yp>n(ap)SP)M§1 (n(ay)Sp)wop(yp) = W;gsp(d(yp)sp)Mgl(SP)SOO,p(yp) and
M;(Sp)@o,p(?/p) = )‘K,p(qbp)p_l/QSOO,p(\/Eyp% we obtain

Zp(fa 57 8)

= [ D) NG W, (s,

p

+ )\K,p(q/}p)pl/z/ . (X0=)(yp) |N(yp)|;_1/2 W;:?,sp(d(yp)sp)wo,p(\/ﬁyp)dxyp'

Ky

First, we have

[ a2 ) NG, (@) )

P

- = n n s—1/2 n
= [ D) [N | WL (),
n=0 K,p

= eI @) [ v x4,

n=0 K,p
00

= > () L)y AW (d(I)).

n=0
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Next, we have

/K (00Z) () ING) ™2 W2 (d(5)5,)00,(V D),

= (S)(=VD)p? /K D)) NIy Wy, () wp )0 (—4p) Ay

— 1 s— > —_ n n s—1/2 n X
= (S)(=VD)™'p 1/QZ/X (o) ([y,) NGy, [ W, (d(Ty,)w,)d*y,

= () (-VD) P

< SO I WL, (@) [ xa () xanln) 4,

K,p
= (0D (VD) (0E)(IL,) p AW (d(IE)).
n=0
Therefore we obtain
Zp(fa E; 3) = (1 =+ AK,p(¢p)€p(X0~ - Z X0~ n —nle=1/2) W;?sp(d(HZ))
= (145003 (VD) Nyl wp»f) (1 ox0(VD)Z, (T N, (00
X (1= AE(IL)p 12 + (Hp)2p*25)
= EPXO,p(‘/B))‘K,p(wp):p( ( E,(p)p _25) o(f,Ep;5).
by Proposition 5.6. Here note that EpXO,p(\/E))‘K,p(wp) ==+l O
We now consider the case of p=2. For A € Z, and y € K, set
L(A,y) = / ¥, (Tr(\/ﬁ_lyw”) + AD‘lww”) dw. (6.1)
Okp

Lemma 6.6 Letp=2 andp | D.

(1) ForeeZy anda € Q) (a=ord,a), we have

/ Uy (ptex? + ax)dr =
z,

and

Yp(p~?ex® + ax)dr =
zZ, 0 (a < =2).
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(2)  Suppose that ord, D = 2. We have

|D|117/2 charp, (y) (ord, A > 2),

I,(Ay) =
P |D|}19/2 charn;@}x()p(y) (ord, A =1).

(3)  Suppose that ord, D = 3. We have

|D|11)/2 charoK,p(y) (Ol"dpA > 3)’
L(A,y) =< |D|}/? chary1ox (y) (ord, A = 2),
|DI,? char, 1px (y) - 27 {1 + ¥ (AD™ 4+ k(y))}  (ord, A = 1),

where k(y) = Tr(\/b_ly).

Proof. It P is a condition, we put §(P) = 1 if P holds, and §(P) = 0 otherwise. The first
assertion (1) is easily checked.

(2) The assertion in the case ord, A > 2 is easy. Suppose that ord, A = 1. Put § =
1+27'/D. Then Ok, = Z, + Z,0 and 0 is a prime element of K,. We have

DI, 2 1(Ay)

/ dacl/ dxy wp \/> y(zy + 2207)) + AD™ (22 + Tr(0x125) + 99"553))
Z, Z,

— /Z ¥, (AD_ r] + Tr(\/ﬁily)xl) dwl/z ¥y (Tr(\/EAH"y)a:g) dxy
= (ordp Tr(\/ﬁ_ly) = —1) X 0 (ordp Tr(\/ﬁ_lﬁ(’y) > 0) :

Observe that, for y = y1 + 20 (41,92 € Q)), Tr(\/ﬁfly) — y, and Tr(\/ﬁflgﬂy) = —y.
Since

ord,yo = —1, ord,y; > 0<=y € Hljl(’)lx(’p,

we have proved (2).
(3) In this case, we put § = 2='v/D. Then Ok, = Z, + Z,0 and 6 is a prime element of
K,. The assertion in the case ord, A > 3 is easily verified. If ord, A = 2, we have

DI, 1,(A,y)
/z da:l/z dxy ¢p Tr vD ' y(x1 + 200%)) + AD"H(2? + 90"333))
- / ¥, (ADf 3+ Tr(\/ﬁily)xl) dml/ ¥y <Tr(\/5719”y)1’2> dxy
Z, Z,

= charp ox, (y).
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Suppose that ord, A = 1 and let y = y; + y20. Then we have
DI, 1(A.y)

— / d:z:l/ dzy 1, <Tr(\FD71(y1 + 120) (71 — 290)) + AD 7 (2] — 4*1Dx§))
z, Jz,

= Uy (AD ™23 + yox) d:pl/ Yy (—47 Axl — yr122) dao
Zy

Zp
§(ordy g > —1) -2 {1+ 4y (AD" 411} } x5 (ordy 1 = —1)
— charp,lo}x(ﬂp(y) B {1 + 9, (AD™ + yg)} ,

which completes the proof of the lemma. O

Lemma 6.7 Let p=2. For A€ Z, andy € K\, we have
M, @A) o, (y) = DI, L(A,y).
Proof. Since m(A) = —S,n(—A)S,, we have
My, (@A) popy) = My, (=Spn(=A)S,)p0,(y)

¢Kp(_ng)¢p(_AN(wp)) {/K pr(prg)SDO,p(Zp)de} dwy,

Kp

— D] /K e, (— )y~ AN (1)) 00 (VD)

|D|;1/2 /K wKP(\/Bilywz)wp(ADil N(wp))pop(wp)dw,

D[V /o Uy (Te(VD ™ yug) + AD™ N(w,) ) dus,

= DI I(A,y).

Lemma 6.8 Suppose that p =2 and ord, D = 2.
(1) Ife, = —ixo,(VD), then we have
Z,(f,Z58) = =Z(0) 70" (1 = Sp(p)p™™) Ly(f. Zp; 9).
(2)  Ife, =ixop(VD), then we have

Z,(f,Z58) = AEp(p) 0P 2 (1= Su(p)p %) Lu(f, Zpi 5).
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Proof. We have

U= ] mnlap)Silhe(D), Uls(D), UT(p)Uho(D),.
ap€Zyp/p*Zyp
This implies that
Zp(f7 57 8)

- /K (00Z) (8) IN () 52 WO (@) P00 () 3y

+/K (X0Z) () IN(p)I5, 2 Wy, (/72 (p) MT, (D)0, () A"y

+ Z 2)(yp) |N(yp)‘s 12 W;?ep(d( p)m(ap)Sy )M§1(n(ap)sp)@&p(yp)dxyp'

ap€Zy /P2y Ky

From Lemma 6.6 and Lemma 6.7, we obtain
M ((p))20,() = DI, L(p. yp) = chargiox (u).
Since Wy, (d(y,)n(ay)S) MY, (n(ap)Sp)op(yp) = Wy, (d(yp)Sp) MY, (Sp)p0,(yp) and
M, (S 0p(t) = A (Up)p~ pup(v D), we have
Z,(f.5;9)
= /KX(X =) () INC) 52 Wy, (A1) 00,0 (4) 4"

P

+ / (X0Z)(5) IN(g) ;™2 Wy, (d(y,)7(p)) chariox (4,)d"y,

Ky

T v T ) /K (02 (1) IN() 57> WO (d(5)S,) 20V D)y,

= Y (=) (AL AW (d(IIn))

T ()T 2, (d(IL ()

Pep

+ (0E)(=V D) Niep(Up)p™ Y (=) (L) p VAW, (1T )wp,p)-
n=0
First suppose that &, = —ixo,(v/D). By Proposition 5.8, we have Wy, (d(y,)m(p) =
0 (y, € K)). Note that xo,(D) = xop(—1) = wp(—1) = —1 in this case. Hence
Proposition 5.8 shows that

1 [M]8

W(Z5) = (14 e (G Zp(—VD) 5™) Yo (D))" " VAW, (d(IT)

PEp

O

T — s - —s5— - —2s\ 1
= (1 +Z)‘K»p(¢p):p(_\FD) 'p? ) (1 A=, (10,)p 1/ +:P(HP)2p 2 ) .
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Since Ag2()2) = % {wQ <le> — 1y (3 )} = —i by Lemma 3.2, we have

—_

Z,(f.Zis) = —S(p) " 'p* (L= Zu(p)p™™) Lp(f. Zpi ).

Next suppose that ¢, = iXO,p(\/ﬁ). We obtain

Zp(f7 Ea S)
= (1= A0 (VD)) 3 (DL AW, (d(IT)
+ (E)(IL,) 'y AWy, (d(IL, )7 (p))

= (1 + EP(P)APQS) p72 (Ap - Ep(Hp)p78+3/2) (1 - APEP(Hp)pisil/Q + Ep(Hp)

+ Ep(Hp)flpsfl/2
= A2 =p ' +5,00) 07 7?) Lu(f.5p 5)

from Proposition 5.8. Since p = 2, we have

Z,(f.Zis) = N (=0 2+ E(0) '™ 7%) Lu(f, S s)
A (0) P (1= E0(0)p ) Lp(f,Epi 5).

This completes the proof.

Lemma 6.9 Suppose that p =2 and ord, D = 3. Then we have

Z,)(f,Ess) = (Apspx()yp(f\/f))AK’p(%)p—l/z71)

X Ep(Hp)_3p3S_l/2(1 - Ep(p)p_%)Lp(f’ Ep; 5)-

Proof. We have

U= [[ nla)Sith(D)u [ #pa,)to(D),.

ap€Zyp/pPZyp ap€Zyp/p?Zy

This implies that

Zp(fa Z;s) = Zp(l) + ZP(2) + Zp(B) + Zp(4) + ZIJ(5)7

2 —2s
p

)—1
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%ﬂ)=(£ (002) () N2 WO, (1)) 90 (),

»(2) = / (X0Z) (o) IN(p) 2 W, () 72(p) ME, (1(p)) 20, ()" .

2

Z,(3) = / X0=) (Yp) IN( yp)|8 12 Wz?ap(d(yp)ﬁ(pZ))M§1(ﬁ(p2))<p0’p(yp)dxyp,

2

Z,4) = /’MH%ANWPWW&M<>@+MMW<<+mmmww%

2,(5) = Z}/’MH%ANWPW WO (d(yy)nay)S,) ME, (1) Sy) P0n (008" Uy

ap€Zy/p3Zy

W;?,ep (d(yp)n(ap)sp)Mgl (n(ap)Sp)eo.p(Yp)
= ngsp(d(yp)sp)Mgl(Sp)woyp(yp)
(d<yp)sp>)‘K7p(¢p)p_3/2900,p(\/59p)>

we obtain

Zy(1) + Z,(5)

o0

- (1 + gpAKp(zpp)(XOE)(—x/E)—lp3S) > (E)(IL)"p VAW (d(IT))

n=0
= ! (14 5 e (B (02 (—VD) %) (Go(y) = S(T)p 1)
X (1= A S (I)p 2 4+ E,(1L)p ™)
from Proposition 5.10. Recall that
Cy(Ay) = Ay — gpe ™"y (p) X0, (— VD) (1 — ity (1 + p))
defined in (5.10). Next let n =1 or n = p+ 1. By Lemma 6.6 and Lemma 6.7, we have

ML @En)eop(ys) = DL 1(om, yp)
= char, o () 27 {1+ (D" + k() }

where (y,) = Tr(\/ﬁilyp). Hence we obtain

/ (x0Z) (wp) N () 5™ WO () (pn) M, @ (p1)) 0,0 (up) A

P

2252
HP

/’ 14 T nD T+ A ) b IR (T, Py N(Ty) ™),
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X X _ X X
Decompose Oy, as Ok, = Ok (1) + O (2), where

0;(4,(1) = {2’1 + 27 \/722, z1 € Z , 22 € pr}7

Ok,(2) = {21 +2° WDz 2 €Z), 2 € Z;}

Since N(Of (1)) C 1+ p*Z, and N(O,(2)) C 1+ p + p°Z, we have

> /O L Gy oD+ K(pT9p)) | Wi, (AT, 2)7(0%n N(TT2,) ) d"y,

n=1,p+1

- {1+wp<—pD*1>}Wzﬁigp(d(H;?)ﬁ(p» / L

+ {1+ ¢ (—pD™ = p )} W ( )7 (p? +p))/ d*yp
0% (2

+ {1+ ¢ (—plp+ 1D} W, _( ) (p® +p))/ d*yp
05,1

+ {1+ ¢(—plp+1)D" — p*l)} ngsp(d(HPQ)n(p))/ o )dxyp

= {14+ ¢(=pD™ Y} W, (d(IL,*)7(p)) + {1 — ¢p(—pD~" } e, ( n(p® +p)).
Here we used ¢,(—p~') = —1 and 9, (—p(p + 1)D') = —¢,(—pD ). Hence we have
22+ Z4) = (03),) %> {1+wp<—pD } e, (d(IL, )7 (p)
+{1 = ¢(=pD™ )} W, _( (p +p))}-

By Lemma 6.6 and Lemma 6.7, we have
M, ((0%))0,(4) = DI, 1,0, yy) = charyao (),
and get

2,(3) = (xo=)(IL,) '™ VWY (d(IL, )7 (p?)).

DyEp

By Proposition 5.10, we obtain

Z,(2) + Z,(3) + Z,(4)
= E(I,)"p R+ Xop(I1,) "~ IEp(HP)_szs_ngBp
X {1+¢p —pD~ ) pr(1+p)(1—1/1p(—pD_1))}
_ Ep(np)flpsfl/Z
X {1 + (XOE)(Hp)ilngppﬁs/Q (1 + wp(_pDil) - iwp(l +p)(1 - ¢p(_pD71)))} .
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Recall that
B, = 8_7”‘/4)(0@(—])_11_[1,\/5)
defined in (5.9). Therefore we have

Z(f,E58) = Pp(s) Ly(f, Zps 5),

= 7 (14 ) (02) (VD) 5% (Gy(A) — Z, (T, )5 +172)
+Ep(ﬂp)flpsfl/2( pup( p) —s— 1/2 Hp(Hp)2p72s)
X {1 + (XOE)(HP) epBypp®” 32 (1 + %(— ) - iwp(l +p)(1 - ¢p(_PD71)))} .

If pD = +1 (mod 4), then we have w,(1+p) = F1 and w,(—1) = +1 respectively. Note
that

_Jw)  @PD=1 (mod ),
A p(Vp) = {—’iwp(p) (p3D =—-1 (mod 4))

by Lemma 3.2, and

o fi =1 )
Up(—=pD™) {—i (p2D = -1 (mod 4)).

For convenience, put

o 1 (p3D=1 (mod4)),
=i (p?D=-1 (mod4))

and X, = ,w,(p)xop(—VD). Then we have Ak, (1) = awy(p), Up(—pD~!) = ia?,
wp(1+p) = —a? and w,(—1) = o®. Hence we have
D,(s) = pt(L+aX, 'E,(IL) *p™) (A, — e ™41 +ia?) X, — Z,(IL,)p*1/?)
+ (L) "2 (1= A (IL)p 2 + (1L *p ™)
x {1+ Z,(I,) 7 X,p* 2™/ (1 4 ia® +ia®(1 — ia?)) } .
We see that e~ ™/4(1 +ia?) = \/pel® ~V7/* = /pa, and get
O,(s) = pt(L+aX, 'E,(I,) ™) (A, — aX,p'/? — Z,(IL,)p*/?)
+Ep(Hp)_1ps_l/2 (1 _ Ap:p(Hp)p_é 1/2 +:p(1—[ )2 —25) (1 +aXpup(H ) 1ps)
= EP(HP)_lps_l/Q - ApoaEp(Hp)_lps_l + (aX, - O‘Xp ):p(Hp) 2]923 1z
- Ep(Hp)73p3871/2 + axg;lApEp(Hp)73P387l~
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Note that
aX, —aX, ' = £,y (P)X0,(VD)(a® — @) = 0.
Hence we obtain

Dy (s)
— p(Hp)—lps—l/Q _ APXPQEP(HP)_lpS_l _ Ep(Hp)—dpds—l/Q + ApoaEp(Hp)_3p55_1

p(Hp)73p5571/2(1 _ Ep(Hp)2p72s) (Apo@p71/2 _ 1)

o(IL) 2020 = 2,0 (Ao (—VD)Ak (o —1).

which completes the proof. O

[11 [1]

[1]

Finally, we prove our results (Theorem 4.1 and Corollary 4.3).

Proof of Theorem 4.1. Lemma 6.1, 6.2, 6.3, 6.4, 6.5, 6.8 and 6.9 imply
7T627T

(47) (k0 /2451

X H (1 =p )] [Eo(1L,) = P D,y (f; 9).

p<oo p|D

Z(f,2;s) Wil (k+0)/2+s—1)L(f,=;s)

Note that =,(p) = 1 for all p < oo since 1 = Z(p) = Z,(p). It is easily seen that
=,(T,)~ %P = = (v/D)~'. Since VD € Ok, for pt D and Zoo(VD) = (=1)* =072 we
get

= ()" T=.(VD).

p|D

Hence we obtain HEP(HP)“’“PD = (—1)*=9/2_ Therefore we have
p|lD

_ (_1)(k7€)/27re27r . _
27.%55) = sy Wral (6 4+ 0/2 4+ 5 = 068 LU S [[D,05:9)

p|D
Od

Proof of Corollary 4.3. We put Z*(f,Z;s) = 7 °I'(5)((25)P—r)/2(5)2(f,Z;s), where

P.(s) = H(s + 7 —j). By Proposition 3.3, we have
=0

ZY(f,Z;5) = Z*(f,5;1 — s).
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Put
L*(f,=2;s) = (27r)*25 ID°T((k—0)/2+ s+ 1) ((k+0)/2+s—1)L(f,Z;s).

Note that I'(s) Pri—e/2(s) = I'((k — £)/2 4 5+ 1). Therefore Theorem 4.1 implies that

DI [IDo(f: ) WiaLr (1. 5:5)

p|D

= D [Dp(fi1 = )Wyl (£,551 = s).

p|D
(I) TIfordy D = 2 and &5 = ix02(v/D), then we obtain
Wialo {L7(f,Z;5) = L*(f, 551 —5)} =0
by Theorem 4.1. Therefore we have
L*(f,558) = L'([,5 1 = s)
if WyoAy # 0.

(II)  If ordy D = 3, then we obtain

Wf,z {A2_\[52X02( 1/\K2 77/)2 1}
x {L*(f,E;s) — L*(f7~7 —s)t=

by Theorem 4.1. Therefore we have
L'(f,8s) = L'(f,51 =)
if Wi {Az — \/§€2X0,2(\/5)/\K,2(1/J2)71} # 0.
(III)  In the remaining case, Theorem 4.1 implies that
Wia{L'(f,5;s) = L'(f, 51— 5)} = 0.
Therefore we have
L'(f,5s) = L'(f,51 = s)
if Wiy #0.
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7 Classical interpretation

In this section, we state the classical interpretations of cusp forms, Atkin-Lehner opera-

tors, Hecke operators and L-function in the case that the class number of K is equal to
1.

7.1 Cusp forms

We put I'y(|D]) = {(Z 2) € GLy(Z); ad —bc =1, c € |D| Z}. Define a Dirichlet char-

D

acter wp by wp = pr. Note that wp(a) = () for (a,D) = 1. Let ¢ be a positive

a
p|D

even integer. A function F on $) is called a cusp form on I'o(|D|) of weight ¢ — 1 with

character wp if the following conditions (1) — (3) are satisfied.

(1) F is holomorphic on $.

(2) Forevery v = (CCL Z) € To(|D]), we have F(v2) = wp(d)(cz+d) " F(z) (2 € H).

(3) F(z) vanishes at each cusp of I'y(|D|).

We denote by Sy_1(T'o(|D|),wp) the space of such functions. We often write z for h, (i)
(heo € Hy).

Lemma 7.1 For f € S;_1(D, xo0), we put

fdm(hoo <Z>) - J(hoovi)éilf(hoo) (hoo € HOO)'

Then we have fam € Se—1(To(|D|), wp)-

Proof. The condition (1) is clearly satisfied. Note that I'o(|D|) C Hq N Hocldo(D)y. For
v = <Z Z) € T'o(|D|), we obtain
fam (Yoo hoo <Z>) = J(’Yoohom Z‘)é_lf(’yoohOO)
= J(Voor hoo (1)) T I (hooy ) f(heo7;") (77 € Haop)
— HXOJJ(d)(cz + d) T (hoo, 1) f (hoo)

p|D

= wp(d)(cz + ) fam (hoo (1))



=

On analytic propertics of L-functions attached to cusp forms on the unitary group of degree two 155

Hence the condition (2) is satisfied. The function f4,, has a period 1. Then we have the
Fourier expansion

fnde) = Sl
where
n) = /Olfdm(z + w)e 2 gy,
Recall that
/ fn(x)h)de =0 (h e Ha)
Q\Qa

for f € Se-1(D, xo). Since

/Q\QA f(n(x)he)dx = /Oldxoo/Zfdxf Fn(zo)n(zs)hoo)

= / F((200)hoo)dr oo
0

1

— J(hoo,i)l_g/ fam(z + Too)dToo
0

J (o, ) 4c(0),

we obtain ¢(0) = 0. From this, we have f4(i00) = 0. For a cusp = # ico, we can prove
that fom(z) = 0 in a similar way. This completes the proof. O

7.2 Atkin-Lehner operators
For f € Si-1(D, xo0), we put

OV fan) () = (V=D i (3 )

Then W fam € Se—1(Lo(|D]), wp).

Lemma 7.2 For f € Si_1(D, xo), put §f = HSDP f. Namely Fs(h hHpr
p|D p|D

Let Ffam(2) = J(hoo, 1) F t(hoo). Then we have

Sf,dm = HXOp Wfdm)

p|D
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Proof. Since wp,, € U, and /D € Ok, for p{ D, we have

Sf,dm(z) = J(hom i)é_lf(hOOHwD,p)

p|D

= J(hoo, ) flwp) o OOHw

= (Wl e e (1)) fJ(proo i onP ) (WD 0cheo)
— Xow(VD ]l_gx D) (W aer )™ fam (05 2)

N W) gxw VD) fun (57

_ _lgxop (—VD/NV=D)* (W fun)(2)

_ gx W fan) (2).

7.3 Hecke operators

For F € S;_1(T'o(|D|), wp) and a positive integer n, we define the (classical) Hecke operator
T, by

F(z)=n'"? Zng(Q)d’”lF (azd“’) .

ad=nb=0

Here we make a convention that wp(a) = 0 if (a, D) # 1. We use the following facts in
later discussion.

e If pis inert in K/Q,

. Z+b R b .
T2 F(2 QZF< > Py F <z+ p) + PP R (p22).

b=0

e If p splits in K/Q,

T,F(z) = p1§F (z ; b) + P2 F (p2).
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e If p ramifies in K/Q,

In this case, we also have

p—1
TWF(2) = —p 25 (Dbz + DR (22 )

Recall that WF(z) = (vV—Dz)'"F (Dlz)

Lemma 7.3 For f € S;_1(D, xo), we have the following.
(1) Ifp is inert in K/Q,
(Zpf)am(2) = p~ Tz fam(2) + fam(2)-
(2) Ifp splits in K/Q,
(Zpifam(2) = PP ST fam(2) (5 =1,2)
(3) If p ramifies in K/Q,

(Zp)am(2) = p*2(10)) T, fam (2) =PI S(WTW fam) (2)-
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Proof. We first suppose that p is inert in K/Q. Note that w,(p) = —1 in this case. We
have

(Zpf )am(2)
= J(hoo, ) (Tpf) (heo)

= —J(hoo, ) flhoed(p™")) = J(hoo, 1)1 Y flhom(p™ )

EZX/:QZ f(hoom(y)d(p))
= —J(hoo, )" wp(p) F(A(P)ochoo) = I (hoo, 1) f )
— J(hee, z)f-lwp<p>§f<d<p—l>wn<—y>mhw>
= P fam(d(P)oohoo <z>>§fdm<n<p ) oo hes (i)

p’—1
+ pl—ezfdm<d<p—l>mn<—y>mhm (i)
= Z 1fdm p Z Zfdm (Z =+ ) +pliez_:fdm (Zp—zy>
y=0
p?—1
= Z 1fdmp Z Zfdm <Z+ > +fdm(z)+p1_£2fdm <Z;;y>

y=0
pieﬂkgTPQfdm( )+ fdm( )
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Next suppose that p splits in K/Q. Note that w,(p) = 1. For j = 1,2, we have

(7;3 .f)dm( )
= J(hoo,1) Ty f)(hoo)

= J(hoo, 1) xop(Tp) ™! {f(h dI, )+ > flhen(z >>}

x€Zyp/pZy

= (oo, ) X0p(Lpg) " F(A(IT 1) oohoo) [ [ 0. (T15)
q#p

+ J(h ) XOP Zf _l‘)oohoo)HXO,q(H;;‘)
q#p
= (17, 'xoee(Il] ;) 1fdm( () scProc (i)

Hl EXOOO D,j Zfdm )oon(_x)oohoo <Z>)

z4x
= V) fan(p2) + VAL, Zfdm( )
= p3/2H ZT fdm( )
Finally, we suppose that p ramifies in K/Q. Put 7,f = 7, f + 7, _ f, where

T f(h) = xop(L,) Y f(hn(z)d(IL,)),

x€Zyp/pZyp

T,-f(h) = xop(M,)"" Y f(hm(Dy)d(IT,")).

YEZp/pZp

Then we have

(Tpf)am(2) = J(hoo )X
= J(heo, 1)

) (hoo)

T,
Ty f)(hoo) + I (hoo, )Ty ) (hec).

159
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First we have

I (hoo, 1)571(7;,#)(/100)
= J(h XOp Z f oon ))

IEZp/pr
= XO,p(Hp>ZJ(d(H;I)mn(_x)mv Z)l_éJ(d(szl)oon(_x)oohom 7;)5_1

f(d(H;1)oon(_x)oohOO)HXO,q(ngl
a#p

= XO,p(HP)XO,p(H;)XO,w(Hg)(HZ)PZZ]Cdm(d(H;l)oon(_x)oohoo <Z>)

=0
p—1
= VB S fam <Z ; x)
=0

— p3/2(ng)-€Tp fam(2).

We next have

J(hoo, ) (T, - f)(B )

= J(hoo i) X0, (M) D f(hoeP(Dy)d(TT,))
yE€Zp/pZyp
- xO,pmprl2J<d<np>wﬁ<—Dy>w,z)l*fﬂd(m)mﬁ(—z)y)whwi)f*
F(d(TT,) o7t Dy)whoo) [ 0 (I12)
q#p

= XO,p(HP)ﬂXO,p(HZ)ilXO,w (1_[;)71 (HZ)H
p—1

> (=Dyz + 1) fam(d(IL,) 7o~ Dy)choc (i)

y=0

- W(H;)fpi::(DyzH)“fdm( pe )

Dyz+1

= —pPILYWT,W fom)(2).
Hence we obtain

(T, f)am(2) = P (5) T, fam(2) — I (WTLW fam)(2)-
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7.4 [L-function

For F(z) =Y ¢(n)e*™* € S;_y(To(|D|),wp), put
n=1

Then we have

and

WK =—-KW

since

KWF(z) = {@(—z)}“F(—é)
= (P (- )
= —(V=D2)'*KF (Dlz)

— _WKF(2).

We assume that F(z) = Zc(n)e2’”"z is a nonzero form in Sy_1(Io(|D]),wp). We call F'
n=1
a normalized newform (in the sense of [Li]) if the following conditions hold.
(1) T,F = MF forptD (), € C).

(2) (1) =1.

Lemma 7.4 ([Li]) Let F(z) = Zc(n)e%inz € Se-1(To(|D)),wp) be a normalized new-
n=1
form.

(i) For any prime p, we have T,F = c¢(p)F and
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(ii) We have |c(p)| = p“=2/2 for p | D.

(i) We have KWF =~F (y=%£1).

For f € Sy—1(D, xo) and s € C, define a Rankin L-function
fdma ZCNCIO[NQ 87

where a = aOj runs over the nonzero integral ideals of K (cf. [Ran], [Sel]). The object
of this subsection is to show the following result.

Proposition 7.5 Let f € Si_1(D,x0) and assume that fam is a normalized newform.
Then we have

L(f.1:8) = C25) 2 (fam s + €~ D[~ p7>) (1 @iy =)

p|D

Lemma 7.6
(1) If pis inert in K/Q,
Ly(f.1i8) = {1 = (07 e’ + D> +p70}

(2) Ifp splits in K/Q,

f,].S H{l_ p] —s+1 (p]/H )(—ZS} 1.

=12

(3) If p ramifies in K/Q,

Ly(f.1;8) = (1 — (W) e(p)p>) (1 -~ H‘ZTp)p‘SH)

-1
P

Proof. First suppose that p is inert in K/Q. Since

(T, = p 1) def(er )

p—1 p—1p—1
_ _ z+b+pB
A VICER RS P f()
b=0 b=0 B=0 p

= P f(pPz) - p' P (2)

2L b i
-y f <Z+ ) +p22f< 5 > :
b=0 p b=0 p
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we have

Taf(z) — gy jz ( )+p22f (Z;rb>

T,(T,f)(2) + "2 f(2).

Hence we obtain
T f(2) = {c)® + 92} f(2) = c(0*) f(2)
if T,f(2) = c(p)f(2). Here we used c(p)? = ¢(p*) — p*~2. Then
Ay = c(p?)p T+ 1
Therefore we have
05— 457 —1
Ly(f.Lis) = {1+ (1 —p—Ap ™ " +p "}
= {1+(- (192)19’”+3 —p)p B ey
_ {1 pH2e(p?) + 1)p 2 +p745}71'
We next suppose that p splits in K / Q. It is easily seen that
Apj = 3/21_[ (p) (j=12).

Hence we have

—S5— o —2s -1
L,(f,1;5) = H {1 = App* 2 + QI /15, )p}
j=1,2
- —S o —2s1 71
= [T {1 -1 Se)p—"" + (107 ;/1L,,;)'p >}
j=1,2
= I {010, c)p " + (0, /11,) )
j=1,2

Finally we suppose that p ramifies in K/Q. Since
Wfdm(z) = KKWfdm<Z) = nyfdm(Z))

we have

TyW fam(2) = VT, K fam(2) = V@dem(z)
and
WTprdm(Z) = W(Tprdm)(z)
Ye(P)WK foum(2)
= —’yC( )KWfdm( )
= —c(p) fam(2).

163
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Recall that
(Tpf)am = P> (1) T, fam — P*PIL (W T W furm).
Hence

Ay = p*2(I3) " e(p) + p* 10, c(p).
Therefore we obtain
Ly(f,1is) = (1—Ap 24 p2)7"
= (1 — P_SH(Hg)_éc(p) _ p_sHH;ec(p) +p‘25) -1

(1- (HZ)_ZC(p)p‘SH)‘l (1 _ H;ZTP)])_S-‘Fl)_l

Let Z(fam; s) HZ (fam; s), where
p<oco
Zc(p%)p“_%)k (p is inert in K/Q),
=%
Zp(fam; s) = Z C(pkﬁkz)ﬂfklﬂﬂ€2 —(ktk2)s (g splits in K/Q),

k1,ka=0

Zc(pk)ﬂf;kpfks (p ramifies in K/Q).
k=0

Lemma 7.7
(1) Ifp is inert in K/Q,
Zp(famis) = (L= p* 27 2)Ly(f, 15 — L+ 1).
(2) If p splits in K/Q,
Zy(famis) = (L= p* 722 Ly(f, L5 — £+ 1),
(3) Ifp ramifies in K/Q,

Zy(fams ) = (1= ep)(15)'™") Ly(f, 155 = €4 1),
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Proof. We first suppose that p is inert in K/Q. We write Z,(fam;s) = ©(p*~*), where

X) = elp™)x*

Since

c(p?)e(p™) = e(p™*2) = pPe(p™) + (™) (k> 1),

we obtain
X Hp(X) = e(p®)X — 1} — {c(@®) + "} {o(X) — 1} + P X p(X) = 0.
This equation implies that

(x) - ——
P T T ) F X 1 PR

Hence we have

1 — p2t-2s-2

1— (p2¢(p?) + 1)p2-—25-2 4 pit—4s—4
= (1—p* > L,(f 1;s—(+1).

Next suppose that p splits in K/Q. Then we get

k

Zp(famis) = Zc pHY () (L)

r=0
= Sty e = e

= I, _He { 120 S)k_Hizzc(Pk)(Hi,zps)k}
Pl k=0

1 —s 14 4 —s
= g o, W)~ e (Tar)}
where
p(X) =) c(ph)Xx*
k=0
Since
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we obtain

XHp(X) = e(p)X =1} = e(p) {p(X) = 1} +p X p(X) = 0.
From this, we have

1
1—c(p)X +p—2X2°

p(X) =
Hence

1 —s
T g, U@ (Mhup™) — I pe(10p7) )
D1 D2

—25— —S s—21"1
= (1=p ) [T {1 e o + 1522
j=12

Zp(fdm; S)

On the other hand, we obtain

Ly(f s —0+1) = ] {1 -105cp ™ + (I,,/10,) " p> 2

=12

_ H {1 —C(p)(H; (HO’ )2@ (—25— 2}*

j=1,2
Therefore we have
Zy(fams ) = (1 — P22 (F L5 — 04 1),
Finally suppose that p ramifies in K/Q. We write Z,(fam;$) = @(Hﬁp’s), where

P(X) = e(p) X"
k=0
Since
c(p)e(p®) = e(*) (k> 0)
we have

Hence we get

On the other hand, we obtain

L,(f,1;s—(+1) = (1 _ (Hg)—éc(p)p—sw)—l (1 B H;;z@p_s“‘f)_

I
—~
—
|
=
SIES

(o)
)

=
S~—
’B\
w
S—
—
/~

—
—

=

Q

~—

)

S~—
bS]

w

—
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Therefore we have

Zp(famis) = o(Lp™*)

= (1= @) ) Ly(f. 135 = (4 1),
This completes the proof. O

Proof of Proposition 7.5. By Lemma 7.6 and 7.7, we obtain

Z(fdm; 8)
= H (1 — @(Hg)epfs) H (1 — p*25+%72) L(f,1;s—(+1)
p|D ptD
= (25— 2042 L(f s = L+ DT =222 (1= ) p)

p|D

Therefore we have

LU 155) = C29)Z(fawi s+ £~ D]J—p72) (1 el p=+1)

p|D

8 An example

In this section, we present an example. We fix a positive integer ¢ divisible by wy. Let
k= ¢ and = = 1. Take and fix a y, € X satisfying X61X2|o;<f = 1 and wy(x2) =

20 —3. Put = x5 X2 Let ¢ = 05 ® 0o € S(Ka) with ¢y = charp, . and ¢ (2) =
22 exp(—27|2]%) (2 € Ko = C). Set

bra(h) = D MY, (R)p(X).

XeK

Lemma 8.1 For { > 2, we have 0, € S;_1(D, xo)-

Proof. 1t is easily seen that

T _ ) Xo(ug)ey (v="f, ur € Up(D)y),
Mo (w)pn = {J(um,i)lzapw (v =00, Us € Unp).
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By these facts and Poisson summation formula, we see that
o (Tt 100) = Xotg) I (e, i) 0y () (7 € Hay b € Ha, g € Un(D) , toe € Usc).

We next show that 6,, is holomorphic. For ho, = 1n(200)d(Yoo) € Hoo, We put z = hoo (1) =
Too +iN(Yso) € . Let hy € Hp y. Then

J(hoovi)e_lem(h hf)
= ()" ML Yoo))Poo(Xoo) My, (hp) o5 (X)

XeK

W2 X2 Woo) " lsell ™D (@0 N(Xow) )00 (Yoo Xoo) M, () p (X )

XeK

chx?Z Z eXp(zﬂ'iIoo N(XOO))(?JOOXOO)PZ eXp(—27T |yooX00‘2)Mz£2 (hf)‘Pf(Xf)
XeK

D X exp(2mi N(Xoo) 2) MY, () (X ),

XeK

which shows the claim. Finally we show that

/ 0., (n(x)h)dz = 0
Q\Qa

for each h € Ha. We can put h = d(Yoo)tochf (Yoo € C*, Uoo € Uoo, hy € Hp ¢). Then
we have

/Q o, feln@ds = /Q a0 NG ()

= M (h)p(0)
= T (ttoos 1) X2 (Yo0) " [Yool| K 0o (0)MT () (0)
= 0.
Hence we obtain 6,, € Se_1(D, xo)- O

For Q € Y, with £ > 2, let Q(z) = Q(2/2°) (z € KX), and put

Oq(h) = /K - (o) ()0, (th)d't.

Here d't = H d't, is the Haar measure on K, normalized by / d't, = / d'te =1
Ok K,

v<o00

Then Ogq is in Sp—1(D, xo0; X0%2)-
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Lemma 8.2 O is a Hecke eigenform with eigenvalues {A,}, where

p+1 (p is inert in K/Q),
p 2 {n(1L,) +n(IL,) "'} (p ramifies in K/Q),
Ny = P2 {05 + 07O} (0 splits inE/Q, j =1,2)

A =

P

Proof. We first suppose that p is inert. Then we have

ML (A )ep(X) = Y ML 2)e(X) = > M (n(y)d(p)en(X)

T€Zy |pZp y€Zp/p*Zp
1l 111/2 _ _
= —X2p(p 1) 1”? al op(p 1X)_ Z Up(p 1$N(X))‘PP(X)
z€Zy /pZp
= > xa®) Il ey NX))p(pX)

YEZy /P> Zy
= _XQ,p(p)p@p(p_lX) - {pcpp(p_lX) - 1} Pp(X) — X2,p(p)_1p_1p2§0p(x)
= p@p(pilx) - ptpp(ple) + @p(X) + ppp(X)
= (p+1Dpp(X).

Hence we see that
7,0q(h) = (p + 1)Oq(h).
Next suppose that p ramifies. Put

I"(X) = xop(IL) Z M;(n(y)d(ﬂp))sﬁp(x),

YEZp/pZyp

(X)) = xop(IL)™" Y ML, @(Da)d(IL))pp(X).

x€Zp/PZp
We show that
I(X) = pl/Qn(Hp)ﬂ‘Pp(X)a
which proves the claim. First we have

I"(X) = XO,p(Hp)XZp(Hp)_l ||Hzo||;17/2 Z Up(y N(X))pp(11,X)

YE€Zp/pZp
P71/277(Hp)71p@p(X)90p(HpX)
= pl/Qn(Hp)fl%(X)-
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We next obtain

I"(X)
= wp(—Dxop(M) ™" > Vi, (Y X )b (=D N(Y))
2€Zy pZy” KP
{ 0 (27 Do) I g ;ZwZ}dY
Ky
= p'n(1L,)
> Wp (Y7 X) (-~ DIN(Y)){IIlep/O ¢KP(HZZ"Y)dZ}dY
x€Zy/pZp K.p
= pl/Qn(H)
> p DL [ (X DN )P )i
©€Zp /pZyp
= p'%n(1L,)
> ptD|* || VDI - / Ve, (—VD L XY ), (N(IL) e N(Y))dY
x€Zyp/pZyp P Ok,p
= PO [ g (VD LYy
HPOKJ?

- -1 o o
— pl/Qn(HP)p|D|p1/2|HP|p/O Ui, (—VD ILMIIXY7)dY
K,p
= p'Pn(IL)p,(X).

Finally suppose that p splits. For j = 1,2, put

LX) = Xop(Lpy) ™' § MY, (AL ))ep(X) + D M, (n(2)d(IT] ;)ep(X)

©€Zy [pZp
Then we have
LX) = pn(IL,)ep(I 5 X) + p~ P n(IL,,)e, (5, X)) (e N(X))

erp/PZp
= p'Pn(IL,) {@p(I1,;X) + charg, (N(X))@, (117, X) } .
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Now it is easily seen that

charz, (N(X))pp (117 , X)

= Z Charngﬁﬂggoﬁ,p (X) CharH;;oK,p (X)

m+n>0

= Z CharH}Ile}},z 0%, (X)

m+n>0
m>0,n>—1

= Z charnglnggo}xﬂp()()—i— Z charngln%o;p()()

m,n>0 m>1,n=-1

= (X)) + Z chatypy g ox (X) = Z charyy r ox (X)

m>1,n>—1 m>1,n>0
= op(X) + @p(H;&HPQX) - @P(H;%X>'
Similarly we obtain
charz, (N(X))SOP(HZQX) = pp(X) + Wp(H;%HpJX) - @p(H;%X)-
Hence we get

IJ(X> = pl/Qn(Hp,j> {‘Pp(X) + @p(H i X)}

2 ]

Therefore we have

7,,i90(h)

= (o) ()T, 50, (th)d't
KUWKL

= p(1,,)
/ (xoS)(t {ZM (th)ep(X) + Y ML, (th)g, (1L 117 X )}dlt
Kl\K}; XeK XeK

= 1/2 {@9 (h) +X2p p;HZJ>@ (d<HPJ1HgJ)h)}

= P {@Q () + (1L, 117 )EX(IL,)Oa(h) }

= ”2{ (L) + (n —19)( 3} @aln).

This completes the proof. O

Lemma 8.3 We have
SDJ;@Q = Ep@Q with Ep = )\Kyp(’gf)p)_l)(zp(\/ﬁ)

for each p| D.
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Proof. Let p | D. Then
M; (wp,p)pp(X)
= ML(d(~VD ),8,)0,(X)
MeplUp)an(—VD )| -VD

1/2 -1
p / U (—VD XY )0, (V,)dY,
Kp

= Ap(p)e(—VD) DM [ Vi, (—VD XY?)dY,

= /\Kp(wp)XZ,p(_\/B)‘Pp(X)
= /\K,p(l/)p)_1X2,p(\/5)‘Pp<X)-

This shows
F0Oa(h) = Oa(hwpy) = Ak (1) X2p(VD)O(h),

and we are done.

Lemma 8.4 We have
L(©q, 1;5) = L(n;s)L(n ' Qs 9).
Here L(n; s) is the Hecke L-function attached to the Hecke character n.

Proof. Suppose that p is inert. Then we have

LP(@Q7 1, 5) = (1 — 2p_2s +p_4s)71

= (1—npp )" (1 - (n’lﬁ)(p)p’%)_

= (1 —1(p) IN(p)L?S)i (1 — (7'Q)(p) |N(p)|;5)71.

1

Note that n(p) = Q(p) = 1. Next suppose that p splits. Then it is easily seen that

Lp(©a, 155) = (1 - {W(Hp,j) + (7771(2)(11%],)}1)75 - £~2(Hp7j)p*25>71

Jj=12

= T (- nm) N, L) (1= 7@, Na,,) )

Jj=12

Finally suppose that p ramifies. Then we obtain
Lp(®ﬂ> 1;5) = (1 - {U(Hp) + U(Hp)_l}p_s +p_2s)71
-1 ~
(1= nm) IN@L)L,) (1= 07 0),) N, )

-1
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Note that Q(II,) = 1. Hence we see that

L(Og,1;s) HL (Bq,1;s) = L(n; s)L(n'Q; ).

p<oo

Proposition 8.5 We have
L*(GQ, 1; S) = L*(®Q7 1; 1- S).

Proof. We first calculate the values of W, (1 ) and W@Q (d(I1,")7(A)) for p = 2 and
A =2,4. Since 6,,(tn Zl/) T N(X ~1X), we have

XeK

Weg(I) = /Q\Q w(—w){/Kl\Kl (X0Q>(t_1)9xz(tn($))dlt}dx
/I(I\Kl (x0Q) (™) x2(t) Z o1 X)dt

XeK!

/ Bt
11 / pulty ),

v<o0

e—Q’T/ dltoo/ d'ty
KL O}{,f
—27

Let p=2and A = p>%P~1 € Z,  We obtain

—x oDt Yy rN(X ML (d(I- YA “1X)dM y dx
Q\QAw( ){/Kl%(x ) )x2(t)v(z N( ))Z (@I )1 (A))p(t X) t}

XeK

- / B9 S M (d(IT; (A X)dl
/ DO .
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Since
M, (7(A))g, (V) = D], > (A, Y) = chary iy (V)
by Lemma 6.6 and 6.7, we have

ML (AL T(A))pp(t7) = /Dxap(IL,) MY, (T(A)) (I, 1)
VPX2,p(I1p) Charof{w (til)-

Hence we get

We, (d(IT, ")72(A))

ot [ d |
o0 K,f
= " /pxap(Il,).

Next we show that €4(Oq) # 0 (for the definition, see (4.2)). We first suppose that
OI‘dQ D = 2. Note that E9 = /\Kyg(wg)_l}(zg(\/ﬁ) = Z‘X()yg(\/ﬁ). Then we have

€(O0) = xo2(Ila) ™ We, (d(II;)T(2))As
= 2e*"(Ily) {n(M2) + n(I) "}
4e7®™ (£ 0).

Here we used the fact n(Il3)> = 1. Next we suppose that ordy D = 3. Since g5 =
Aic2(2)X22(V D)™, we see that

Ay = V22202 (VD) Ak 2(102) ™ = V2 {n(Tly) +n(1y) '} = V2n(v'D) ™! = V2n(1l,).
Note that n(v/D) = n(Ily). Hence we get

€(00) = xo2(Ila) ™' We, (d(I1; " ym(4))V2n(Il)
= 2e77(ILy)?

= 277 (#0).
In the remaining case, it is easily seen that
€5(On) = We, (1) = e7*7 (£ 0).

Hence we have €5(0q) # 0. Therefore O, satisfies the assumptions of Corollary 4.3, and
we have

L*(@Q, 1; S) = L*(GQ, 1; 1-— S).
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