When do the harmonic Hardy spaces with distinct indices coincide on a hyperbolic Riemann surface?

Dedicated to Professor Hisashi Ishida on his sixtieth birthday

Hiroaki MASAOKA
$\binom{$ Received October 5, 2007, }{ Revised January 15, 2008}

Abstract

Let R be a hyperbolic Riemann surface. Suppose that $1 \leq p<q \leq \infty$. In this paper we give a characterization that two harmonic Hardy spaces $h_{p}(R)$ and $h_{q}(R)$ coincide with each other by using the term of the Martin boundary Δ^{M} of R. Let Δ_{1}^{M} be the minimal Martin boundary of R. In the case that $p>1$ it holds that $h_{p}(R)$ coincides with $h_{q}(R)$ if and only if there exists a nullset N of Δ^{M} with respect to the harmonic measure such that $\Delta_{1}^{M} \backslash N$ consists of finitely many points with positive harmonic measure. In the case that $p=1$ it holds that $h_{1}(R)$ coincides with $h_{q}(R)$ if and only if Δ_{1}^{M} consists of finitely many points with positive harmonic measure.

Keywords: hyperbolic Riemann surface, harmonic Hardy space, Martin boundary, minimal Martin boundary, harmonic measure

1. Introduction

Denote by O_{G} the class of open Riemann surfaces R such that there exist no Green's functions on R. We say that an open Riemann surface R is parabolic (resp. hyperbolic) if R belongs (resp. does not belong) to O_{G}.

For an open Riemann surface R, we denote by $H P_{+}(R)$ and $H B_{+}(R)$ the classes of nonnegative harmonic functions and non-negative bounded harmonic functions on R, respectively. Denote by $M H B_{+}(R)$ the class of all finite limit functions of monotone increasing sequences of $H B_{+}(R)$. Set $H X(R)=H X_{+}(R)-H X_{+}(R)(X=P, B)$, where $H X_{+}(R)-H X_{+}(R)=\left\{h_{1}-h_{2} \mid h_{j} \in\right.$ $\left.H X_{+}(R)(j=1,2)\right\}$, and $M H B(R)=M H B_{+}(R)-M H B_{+}(R)$. Then, $H B(R)$ are the class of bounded harmonic functions on $R . M H B(R)$ is called the class of quasi-bounded functions on R. It is well-known that if R is parabolic, then $H X(R)(X=P, B)$ and $M H B(R)$ consist of constant functions (cf. [4]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let $\Delta^{M}=\Delta^{R, M}$ and $\Delta_{1}^{M}=\Delta_{1}^{R, M}$ the Martin boundary of R and the minimal Martin boundary on R, respectively. We refer to [1] for the details about the Martin boundary. Denote by $h_{p}(R)(1 \leq p \leq \infty)$ the harmonic Hardy space with index p on R (see Definition of harmonic Hardy space in the next section). It is
well-known that, if $1 \leq p<q, h_{q}(R) \subset h_{p}(R)$. It is natural to ask when the converse inclusion relation holds. The purpose of this paper is to answer the question.
Theorem 1. Suppose that R is hyperbolic and $1<p<q \leq \infty$. Then the followings are equivalent:
(i) $h_{p}(R)=h_{q}(R)$,
(ii) there exists a nullset N of Δ^{M} with respect to the harmonic measure such that $\Delta_{1}^{M} \backslash N$ consists of finitely many points with positive harmonic measure,
(iii) $\operatorname{dim} h_{p}(R)=\operatorname{dim} h_{q}(R)<\infty$, where $\operatorname{dim} h_{p}(R)$ is the dimension of the linear space $h_{p}(R)$.
Theorem 2. Suppose that R is hyperbolic, $p=1$ and $1<q \leq \infty$. Then the followings are equivalent:
(i) $h_{1}(R)=h_{q}(R)$,
(ii) Δ_{1}^{M} consists of finitely many points with positive harmonic measure,
(iii) $\operatorname{dim} h_{1}(R)=\operatorname{dim} h_{q}(R)<\infty$,
where $\operatorname{dim} h_{1}(R)$ is the dimension of the linear space $h_{1}(R)$.
As an immediate consequence of Theorem 2, by the fact that $h_{1}(R)=H P(R)$ and definition of $h_{\infty}(R)$, we obtain the following.
Corollary (cf. [2, Theorem]). Suppose that R is hyperbolic. Then the followings are equivalent:
(i) $H P(R)=H B(R)$,
(ii) Δ_{1}^{M} consists of finitely many points with positive harmonic measure,
(iii) $\operatorname{dim} H P(R)=\operatorname{dim} H B(R)<\infty$,
where $\operatorname{dim} H P(R)$ is the dimension of the linear space $H P(R)$.

2. Preliminaries

In this section we state several propositions in order to prove theorems in $\S 1$ in the next section. Denote by $\omega_{z}^{M}(\cdot)$ the harmonic measure on Δ^{M} with respect to $z \in R$. We also denote by $k_{\zeta}(z)\left((\zeta, z) \in\left(R \cup \Delta^{M}\right) \times R\right)$ the Martin kernel on R with pole at ζ. The following proposition plays fundamental role in the proof of Theorem 2.
Proposition 1 (cf. [1, Hilfssatz 13.3]). Let ζ belong to Δ_{1}^{M}. Then the Martin kernel $k_{\zeta}(\cdot)$ with pole at ζ is bounded on R if and only if the harmonic measure $\omega .(\{\zeta\})$ of the singleton $\{\zeta\}$ is positive.

The next proposition follows from the Martin representation theorem which is the most fundamental theorem in the Martin theory.
Proposition 2. Let u be an element in $H P(R)$. There exists a signed measure μ on Δ^{M} such that $\mu\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=0$ and $u=\int_{\Delta_{1}^{M}} k_{\xi} d \mu(\xi)$.
Proof of Proposition 2. Let u be an element in $H P(R)$. By definition of $H P(R)$ there exist elements u_{1} and u_{2} of $H P_{+}(R)$ with $u=u_{1}-u_{2}$ on R. By the Martin representation theorem(cf. [1, Satz 13.1]) we find the Radon measure $\mu_{j}(j=1,2)$ on Δ^{M} such that $\mu_{j}\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=0(j=1,2)$
and $u_{j}=\int_{\Delta_{1}^{M}} k_{\xi} d \mu_{j}(\xi)(j=1,2)$. Set $\mu=\mu_{1}-\mu_{2}$. Then μ is a signed measure on Δ^{M}. We have

$$
\mu\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=\mu_{1}\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)-\mu_{2}\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=0-0=0
$$

and

$$
u=u_{1}-u_{2}=\int_{\Delta_{1}^{M}} k_{\xi} d \mu_{1}(\xi)-\int_{\Delta_{1}^{M}} k_{\xi} d \mu_{2}(\xi)=\int_{\Delta_{1}^{M}} k_{\xi} d \mu(\xi)
$$

We have the desired result.
Definition (cf. [3, Definition in p. 437 and Theorem 4]). Let $p \geq 1$. Set

$$
h_{p}(R)= \begin{cases}\left\{u \mid u \text { is harmonic on } R \text { and }|u|^{p} \text { has a harmonic majorant on } R\right\}, & \text { for } p \geq 1, \\ H B(R), & \text { for } p=\infty\end{cases}
$$

We call $h_{p}(R)$ the harmonic Hardy space with index p on R. We remark that $h_{1}(R)=H P(R)$ and that, if $1 \leq p<q \leq \infty, h_{q}(R) \subset h_{p}(R)$.
Proposition 3 (cf. [3, Definition in p .437 and Theorems 4 and 6]). Let p be a real number with $1<p<\infty$. Fix a point z_{0} of R. The next conditions are equivalent.
(i) $u \in h_{p}(R)$,
(ii) u has the minimal fine limit $u^{*}(\zeta)$ at almost every point $\zeta\left(\in \Delta_{1}^{M}\right)$ with respect to the harmonic measure $\omega_{z_{0}}^{M}$ such that $u(z)=\int_{\Delta_{1}^{M}} u^{*}(\zeta) d \omega_{z}^{M}(\zeta)$, and $\int_{\Delta_{1}^{M}}\left|u^{*}(\zeta)\right|^{p} d \omega_{z_{0}}^{M}(\zeta)<\infty$.

Set $h_{p+}(R):=h_{p}(R) \cap H P_{+}(R)$. By the above proposition it is easily seen that $h_{p}(R)=$ $h_{p+}(R)-h_{p+}(R)$ and $h_{p+}(R) \subset M H B_{+}(R)$.

3. Proof of Theorems

3.1 Proof of Theorem 1

First we consider $q \neq \infty$. Let p and q be real numbers with $1<p<q$. Suppose that (i) holds. Fix a point z_{0} of R. Further we suppose that there exists a point $\zeta \in \Delta^{M}$ such that, for any positive $\rho, \omega_{z_{0}}^{M}\left(U_{\rho}(\zeta)\right)>0$ and $\omega_{z_{0}}^{M}(\{\zeta\})=0$, where $U_{\rho}(\zeta)$ is the disc with center ζ and radius ρ with respect to the standard metric on $R \cup \Delta_{1}^{M}$. Hence, there exists a monotone decreasing sequence $\left\{\rho_{n}\right\}$ with $\lim _{n \rightarrow \infty} \rho_{n}=0, \omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right)>0$ and $\omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta)\right) \leq 1 / n^{2 q /(q-p)}(n \in \mathbb{N})$. Set

$$
f^{*}(\xi)= \begin{cases}{\left[\omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right)\right]^{-1 / q},} & \text { for } \xi \in U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta) \\ 0, & \text { for } \xi \in \Delta^{M} \backslash U_{\rho_{1}}(\zeta)\end{cases}
$$

And set $f(z)=\int_{\Delta_{1}^{M}} f^{*}(\xi) d \omega_{z}^{M}(\xi)$. Then, we find that f has a minimal fine limit $f^{*}(\xi)$ at almost every point $\xi \in \Delta_{1}^{M}$ with respect to $\omega_{z_{0}}^{M}$. Hence, we have

$$
\begin{aligned}
\int_{\Delta_{1}^{M}} f^{*}(\xi)^{q} d \omega_{z_{0}}^{M}(\xi) & =\sum_{n=1}^{\infty}\left[\omega_{z 0}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right)\right]^{-1} \omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right) \\
& =\sum_{n=1}^{\infty} 1=\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Delta_{1}^{M}} f^{*}(\xi)^{p} d \omega_{z_{0}}^{M}(\xi) & =\sum_{n=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right)\right]^{-p / q} \omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right) \\
& =\sum_{n=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right)\right]^{1-p / q} \\
& \leq \sum_{n=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(U_{\rho_{n}}(\zeta) \backslash U_{\rho_{n+1}}(\zeta)\right)\right]^{(q-p) / q} \\
& \leq \sum_{n=1}^{\infty} 1 / n^{2}<\infty .
\end{aligned}
$$

By Proposition 3 we find that $f \in h_{p}(R) \backslash h_{q}(R)$. By (i) this is a contradiction. Hence, if $\zeta\left(\in \Delta^{M}\right)$ satisfies that, for any positive $\rho, \omega_{z_{0}}^{M}\left(U_{\rho}(\zeta)\right)>0, \omega_{z_{0}}^{M}(\{\zeta\})>0$. By the above fact, it holds that there exists a nullset N of Δ^{M} with respect to $\omega_{z_{0}}^{M}$ such that $\Delta_{1}^{M} \backslash N$ consists of at most countably many points with positive harmonic measure. To see this set

$$
N=\left\{\zeta \in \Delta^{M} \mid \text { there exists a positive } \rho_{\zeta} \text { with } \omega_{z_{0}}^{M}\left(U_{\rho_{\zeta}}(\zeta)\right)=0\right\}
$$

and set $F=\Delta^{M} \backslash N$. Clearly $F \cup N=\Delta^{M}, F \cap N=\emptyset$ and, for any $\zeta \in F, \omega_{z_{0}}^{M}(\{\zeta\})>0$. Hence F is an at most countable subset of Δ_{1}^{M} because $\omega_{z_{0}}^{M}\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=0$. Hence it is sufficient to prove that $\omega_{z_{0}}^{M}(N)=0$. Set $O=\cup_{\zeta \in N} U_{\rho_{\zeta}}(\zeta)$. Clearly O is an open subset of $R \cup \Delta^{M}$ and $O \cap \Delta^{M}=N$. By the Lindelöf theorem there exists a sequence $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ of N with $O=\cup_{n=1}^{\infty} U_{\rho_{\xi_{n}}}\left(\xi_{n}\right)$. Hence $\omega_{z_{0}}^{M}(N) \leq \omega_{z_{0}}^{M}(O) \leq \sum_{n=1}^{\infty} \omega_{z_{0}}^{M}\left(U_{\rho_{\xi_{n}}}\left(\xi_{n}\right)\right)=0$, and hence, $\omega_{z_{0}}^{M}(N)=0$.

Suppose that $\#\left(\Delta_{1}^{M} \backslash N\right)=\aleph_{0}$, where $\#\left(\Delta_{1}^{M} \backslash N\right)$ is the cardinal number of $\Delta_{1}^{M} \backslash N$. Set $\Delta_{1}^{M} \backslash N=$ $\left\{\zeta_{n}\right\}_{n=1}^{\infty}$. Hence there exists a subsequence $\left\{\zeta_{n_{l}}\right\}_{l=1}^{\infty}$ of $\left\{\zeta_{n}\right\}$ with $\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right) \leq 1 / l^{2 q /(q-p)}(l \in \mathbb{N})$. Set

$$
g^{*}(\xi)= \begin{cases}{\left[\omega_{z 0}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{-1 / q},} & \text { for } \xi=\zeta_{n_{n}}, \\ 0, & \text { for } \xi \in \Delta^{M} \backslash\left\{\zeta_{n_{l}}\right\}_{l=1}^{\infty}\end{cases}
$$

And set $g(z)=\int_{\Delta_{1}^{M}} g^{*}(\xi) d \omega_{z}^{M}(\xi)$. Then, we find that g has a minimal fine limit $g^{*}(\xi)$ at almost every point $\xi \in \Delta_{1}^{M}$ with respect to $\omega_{z_{0}}^{M}$. Hence, we have

$$
\begin{aligned}
\int_{\Delta_{1}^{M}} g^{*}(\xi)^{q} d \omega_{z_{0}}^{M}(\xi) & =\sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{n}}\right)\right]^{-1} \omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right. \\
& =\sum_{n=1}^{\infty} 1=\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Delta_{1}^{M}} g^{*}(\xi)^{p} d \omega_{z_{0}}^{M}(\xi) & =\sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{-p / q} \omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right) \\
& =\sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{1-p / q} \\
& \leq \sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{(q-p) / q} \\
& \leq \sum_{l=1}^{\infty} 1 / l^{2}<\infty
\end{aligned}
$$

By Proposition 3 we find that $g \in h_{p}(R) \backslash h_{q}(R)$. By (i) this is a contradiction. Hence, there exists a nullset N of Δ^{M} with respect to $\omega_{z_{0}}^{M}$ such that $\Delta_{1}^{M} \backslash N$ consists of finitely many points with positive harmonic measure, and so, we get (ii).

Suppose that (ii) holds. Fix a point z_{0} of R. We can find a nullset N of Δ^{M} with respect to $\omega_{z_{0}}^{M}$ such that $\Delta_{1}^{M} \backslash N$ consists of at finitely many points with positive harmonic measure. Let n_{0} be the cardinal number of $\Delta_{1}^{M} \backslash N$. Set $\Delta_{1}^{M} \backslash N=\left\{\zeta_{n}\right\}_{n=1}^{n_{0}}$. Let p and q be real numbers with $p<q$ and $p>1$. Clearly $h_{q}(R) \subset h_{p}(R)$. Take any element of h of $h_{p}(R)$. By definition of $h_{p}(R)$ h has a minimal fine limit $h^{*}(\xi)$ at almost every point $\xi \in \Delta_{1}^{M}$ with respect to $\omega_{z_{0}}^{M}$ such that $h(z)=\int_{\Delta_{1}^{M}} h^{*}(\xi) d \omega_{z}^{M}(\xi)$ and $\int_{\Delta_{1}^{M}}\left|h^{*}(\xi)\right|^{p} d \omega_{z_{0}}^{M}(\xi)<\infty$. By (ii) we have

$$
h(z)=\int_{\Delta_{1}^{M}} h^{*}(\xi) d \omega_{z}^{M}(\xi)=\sum_{n=1}^{n_{0}} h^{*}\left(\zeta_{n}\right) \omega_{z}^{M}\left(\left\{\zeta_{n}\right\}\right)
$$

and

$$
\int_{\Delta_{1}^{M}}\left|h^{*}(\xi)\right|^{p} d \omega_{z_{0}}^{M}(\xi)=\sum_{n=1}^{n_{0}}\left|h^{*}\left(\zeta_{n}\right)\right|^{p} \omega_{z_{0}}^{M}\left(\left\{\zeta_{n}\right\}\right)<\infty .
$$

Hence $\operatorname{dim} h_{p}(R) \leq n_{0}$ and $\left|h^{*}\left(\zeta_{n}\right)\right|<\infty\left(n=1, \ldots, n_{0}\right)$. Thus,

$$
\int_{\Delta_{1}^{M}}\left|h^{*}(\xi)\right|^{q} d \omega_{z_{0}}^{M}(\xi)=\sum_{n=1}^{n_{0}}\left|h^{*}\left(\zeta_{n}\right)\right|^{q} \omega_{z_{0}}^{M}\left(\left\langle\zeta_{n}\right\}\right)<\infty,
$$

and hence $h \in h_{q}(R)$, that is, $h_{p}(R) \subset h_{q}(R)$. Hence $h_{p}(R)=h_{q}(R)$. Hence $\operatorname{dim} h_{q}(R)=$ $\operatorname{dim} h_{p}(R) \leq n_{0}<\infty$. We get (iii).

Suppose that (iii) holds. Let p and q be real numbers with $p<q$ and $p>1$. Since $h_{p}(R)$ and $h_{q}(R)$ are linear spaces and $h_{q}(R)$ is a subspace of $h_{p}(R)$, by (iii), we find that $h_{p}(R)=h_{q}(R)$. Hence we get (i).

Next we consider $q=\infty$. Suppose that (i) holds. Take a real number p^{\prime} with $p^{\prime}>p$. Then $H B(R) \subset h_{p^{\prime}}(R) \subset h_{p}(R)$. By (i) $h_{p^{\prime}}(R)=h_{p}(R)$. By the implication: (i) \Rightarrow (ii) in the case that $q \neq \infty$ we get (ii).

Suppose that (ii) holds. Fix a point z_{0} of R. We can find a nullset N of Δ^{M} with respect to $\omega_{z_{0}}^{M}$ such that $\Delta_{1}^{M} \backslash N$ consists of finitely many points with positive harmonic measure. Let n_{0} be the cardinal number of $\Delta_{1}^{M} \backslash N$. Set $\Delta_{1}^{M} \backslash N=\left\{\zeta_{n}\right\}_{n=1}^{n_{0}}$. Clearly $H B(R) \subset h_{p}(R)$. Take any element h of
$h_{p}(R)$. By definition of $h_{p}(R)$ we find that $h(z)=\int_{\Delta_{1}^{M}} h^{*}(\xi) d \omega_{z}^{M}(\xi)$ and $\int_{\Delta_{1}^{M}}\left|h^{*}(\xi)\right|^{p} d \omega_{z_{0}}^{M}(\xi)<\infty$. By (ii) we have

$$
h(z)=\int_{\Delta_{1}^{M}} h^{*}(\xi) d \omega_{z}^{M}(\xi)=\sum_{n=1}^{n_{0}} h^{*}\left(\zeta_{n}\right) \omega_{z}^{M}\left(\left\{\zeta_{n}\right\}\right)
$$

and

$$
\int_{\Delta_{1}^{M}}\left|h^{*}(\xi)\right|^{p} d \omega_{z_{0}}^{M}(\xi)=\sum_{n=1}^{n_{0}}\left|h^{*}\left(\zeta_{n}\right)\right|^{p} \omega_{z_{0}}^{M}\left(\left(\zeta_{n}\right\}\right)<\infty .
$$

Hence $\operatorname{dim} h_{p}(R) \leq n_{0}$ and $\left|h^{*}\left(\zeta_{n}\right)\right|<\infty\left(n=1, \ldots, n_{0}\right)$. Thus, $h \in H B(R)$, that is, $h_{p}(R) \subset$ $H B(R)$. Hence $h_{p}(R)=H B(R)$. Hence $\operatorname{dim} H B(R)=\operatorname{dim} h_{p}(R) \leq n_{0}<\infty$. We get (iii).

Suppose that (iii) holds. Since $h_{p}(R)$ and $H B(R)$ are linear spaces and $H B(R)$ is a subspace of $h_{p}(R)$, by (iii), we find that $h_{p}(R)=H B(R)$. Hence we get (i).

Therefore we have the desired result.

3.2 Proof of Theorem 2

First we consider $q \neq \infty$. Suppose that (i) holds, that is, $\operatorname{HP}(R)=h_{q}(R)(q>1)$. Let h be a minimal harmonic function on R. Clearly $h \in H P_{+}(R)$. By (i) $h \in H P_{+}(R) \cap h_{q}(R)=h_{q^{+}}(R)$. Since $h_{q+}(R) \subset M H B_{+}(R), h \in M H B_{+}(R)$. Thus there exists a monotone increasing sequence $\left\{h_{n}\right\}_{n=1}^{\infty}$ of $H B_{+}(R)$ such that $h_{n} \neq 0(n \in \mathbb{N})$ and $\lim _{n \rightarrow \infty} h_{n}=h$ on R. By minimality of h there exists a positive constant α such that $h=\alpha h_{1}$ on R. Hence h is bounded on R. Let ζ_{h} be the element of Δ_{1}^{M} coressponding to h. Fix a point z_{0} of R. Since h is minimal, there exists a positive constant β with $h=\beta k_{\zeta_{h}}$. Hence, because h is bounded on R, by Proposition 1 we find that the harmonic measure $\omega_{z_{0}}^{M}\left(\left\{\zeta_{h}\right\}\right)$ of $\left\{\zeta_{h}\right\}$ is positive. Hence, Δ_{1}^{M} consists of at most countably many points with positive harmonic measure.

Suppose that $\sharp \Delta_{1}^{M}=\boldsymbol{\aleph}_{0}$. Set $\Delta_{1}^{M}=\left\{\zeta_{n}\right\}_{n=1}^{\infty}$. Hence there exists a subsequence $\left\{\zeta_{n_{l}}\right\}_{l=1}^{\infty}$ of $\left\{\zeta_{n}\right\}_{n=1}^{\infty}$ with $\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right) \leq 1 / l^{2 q /(q-1)}(l \in \mathbb{N})$. Set

$$
g^{*}(\xi)= \begin{cases}{\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{-1 / q},} & \text { for } \xi=\zeta_{n_{n}}, \\ 0, & \text { for } \xi \in \Delta^{M} \backslash\left\{\zeta_{n_{l}}\right\}_{l=1}^{\infty} .\end{cases}
$$

And set $g(z)=\int g^{*}(\xi) d \omega_{z}^{M}(\xi)$. Then we have

$$
\begin{aligned}
\int g^{*}(\xi)^{q} d \omega_{z_{0}}^{M}(\xi) & =\sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{-1} \omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right) \\
& =\sum_{n=1}^{\infty} 1=\infty,
\end{aligned}
$$

and

$$
\begin{aligned}
\int g^{*}(\xi) d \omega_{z_{0}}^{M}(\xi) & =\sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{-1 / q} \omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right) \\
& =\sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{1-1 / q} \\
& \leq \sum_{l=1}^{\infty}\left[\omega_{z_{0}}^{M}\left(\left\{\zeta_{n_{l}}\right\}\right)\right]^{(q-1) / q} \\
& \leq \sum_{l=1}^{\infty} 1 / l^{2}<\infty .
\end{aligned}
$$

By Proposition 3 we find that $g \in M H B(R) \backslash h_{q}(R)$. Since $H P(R) \supset M H B(R)$, by (i), this is a contradiction. Hence Δ_{1}^{M} consists of finitely many points with positive harmonic measure, and so, we get (ii).

Suppose that (ii) holds. Let n_{0} be the cardinal number of Δ_{1}^{M}. Set $\Delta_{1}^{M}=\left\{\zeta_{n}\right\}_{n=1}^{n_{0}}$. Let $q>1$. Clearly $h_{q}(R) \subset H P(R)$. Take any element h of $H P(R)$. By Proposition 2 we find a signed measure μ on Δ^{M} that $\mu\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=0$ and $h(z)=\int_{\Delta_{1}^{M}} \omega_{z}^{M}(\{\xi\}) d \mu(\xi)$. By (ii) we have

$$
h(z)=\int_{\Delta_{1}^{M}} \omega_{z}^{M}(\{\xi\}) d \mu(\xi)=\sum_{n=1}^{n_{0}} \omega_{z}^{M}\left(\left\{\zeta_{n}\right\}\right) \mu\left(\left\{\zeta_{n}\right\}\right)=\int_{\Delta_{1}^{M}} \mu(\{\xi\}) d \omega_{z}^{M}(\xi)
$$

and

$$
\left|\mu\left(\left\{\zeta_{n}\right\}\right)\right|<\infty\left(n=1, \ldots, n_{0}\right) .
$$

Fix a point z_{0} of R. We have

$$
\int_{\Delta_{1}^{M}}|\mu(\{\xi\})|^{q} d \omega_{z_{0}}^{M}(\xi)=\sum_{n=1}^{n_{0}}\left|\mu\left(\left\{\zeta_{n}\right\}\right)\right|^{q} \omega_{z_{0}}^{M}\left(\left\{\zeta_{n}\right\}\right)<\infty .
$$

Hence $\operatorname{dim} H P(R) \leq n_{0}$ and by Proposition $3, h \in h_{q}(R)$, that is, $H P(R) \subset h_{q}(R)$. Hence $H P(R)=h_{q}(R)$. Hence $\operatorname{dim} h_{q}(R)=\operatorname{dim} H P(R) \leq n_{0}<\infty$. We get (iii).

Suppose that (iii) holds. Let $q>1$. Since $H P(R)$ and $h_{q}(R)$ are linear spaces and $h_{q}(R)$ is a subspace of $H P(R)$, by (iii), we find that $H P(R)=h_{q}(R)$. Hence we get (i).

Next we consider $q=\infty$. Suppose that (i) holds, that is, $H B(R)=H P(R)$. Let $q^{\prime}>1$. Since $H B(R) \subset h_{q^{\prime}}(R) \subset H P(R), h_{q^{\prime}}(R)=H P(R)$. By the implication: (i) \Rightarrow (ii) in the case that $q \neq \infty$ we get (ii).

Suppose that (ii) holds. Let n_{0} be the cardinal number of Δ_{1}^{M}. Set $\Delta_{1}^{M}=\left\{\zeta_{n}\right\}_{n=1}^{n_{0}}$. Clearly $H B(R) \subset H P(R)$. Take any element h of $H P(R)$. By Proposition 2 we find a signed measure μ on Δ^{M} such that $\mu\left(\Delta^{M} \backslash \Delta_{1}^{M}\right)=0$ and $h(z)=\int_{\Delta_{1}^{M}} \omega_{z}^{M}(\{\xi\}) d \mu(\xi)$. By (ii) we have

$$
h(z)=\int_{\Delta_{1}^{M}} \omega_{z}^{M}(\{\xi\}) d \mu(\xi)=\sum_{n=1}^{n_{0}} \mu\left(\left\{\zeta_{n}\right\}\right) \omega_{z}^{M}\left(\left\{\zeta_{n}\right\}\right)
$$

Hence $\operatorname{dim} H P(R) \leq n_{0}$ and $h \in H B(R)$, that is, $H P(R) \subset H B(R)$. Hence $H P(R)=H B(R)$. Hence $\operatorname{dim} H B(R)=\operatorname{dim} H P(R) \leq n_{0}<\infty$. We get (iii).

Suppose that (iii) holds. Since $H P(R)$ and $H B(R)$ are linear spaces and $H B(R)$ is a subspace of $H P(R)$, by (iii), we find that $H P(R)=H B(R)$. Hence we get (i).

Therefore we have the desired result.

References

[1] C. Constantinescu and A. Cornea, Ideale Ränder Riemanncher Flächen, Springer, 1969.
[2] H. Masaoka and S. Segawa, Hyperbolic Riemann surfaces without unbounded positive harmonic functions, Advanced Studies in Pure Math., 44(2006), pp.227-232.
[3] L. Naïm, \mathcal{H}^{p}-spaces of harmonic functions, Ann. Inst. Fourier Grenoble, 17(1967), pp.425-469.
[4] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970.

いつ双曲的リーマン面上の異なる指数をもつ調和ハーディ空間は同一の集合になるか？

——還暦を祝して石田久教授に捧げる——

正 岡 弘 照

要 旨
R を双曲的（グリーン関数が存在する）リーマン面とする。 $1 \leq p<q \leq \infty$ を仮定する。この論文では，調和ハーディ空間 $h_{p}(R)$ と $h_{q}(R)$ が同一の集合であるための特徴づけを R のマルチン境界 Δ^{M} の言葉で与える。 Δ_{1}^{M} を R のミニマルマルチン境界とする。 $p>1$ の場合，$h_{p}(R)$ と $h_{q}(R)$ が同一の集合であるための必要十分条件は Δ^{M} の部分集合 N が存在して，その Δ^{M} 上の調和測度は 0 で，$\Delta_{1}^{M} \backslash N$ が有限個の Δ^{M} 上の調和測度が正 の点からなることである。 $p=1$ である場合，$h_{1}(R)$ と $h_{q}(R)$ が同一の集合であるための必要十分条件は Δ_{1}^{M} が有限個の Δ^{M} 上の調和測度が正の点からなることである。

キーワード：双曲的リーマン面，調和ハーディ空間，マルチン境界，ミニマルマルチン境界，調和測度

