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Abstract

Let R be a hyperbolic Riemann surface. Suppose that 1 ≤ p < q ≤ ∞. In this paper
we give a characterization that two harmonic Hardy spaces hp(R) and hq(R) coincide with
each other by using the term of the Martin boundary ΔM of R. Let ΔM

1 be the minimal Martin
boundary of R. In the case that p > 1 it holds that hp(R) coincides with hq(R) if and only if
there exists a nullset N of ΔM with respect to the harmonic measure such that ΔM

1 \ N consists
of finitely many points with positive harmonic measure. In the case that p = 1 it holds that
h1(R) coincides with hq(R) if and only if ΔM

1 consists of finitely many points with positive
harmonic measure.

Keywords: hyperbolic Riemann surface, harmonic Hardy space, Martin boundary, minimal
Martin boundary, harmonic measure

1. Introduction

Denote by OG the class of open Riemann surfaces R such that there exist no Green’s func-
tions on R. We say that an open Riemann surface R is parabolic (resp. hyperbolic) if R belongs
(resp. does not belong) to OG.

For an open Riemann surface R, we denote by HP+(R) and HB+(R) the classes of non-
negative harmonic functions and non-negative bounded harmonic functions on R, respectively.
Denote by MHB+(R) the class of all finite limit functions of monotone increasing sequences of
HB+(R). Set HX(R) = HX+(R)−HX+(R) (X = P, B), where HX+(R)−HX+(R) = {h1−h2 | h j ∈
HX+(R) ( j = 1, 2) }, and MHB(R) = MHB+(R) − MHB+(R). Then, HB(R) are the class of
bounded harmonic functions on R. MHB(R) is called the class of quasi-bounded functions
on R. It is well-known that if R is parabolic, then HX(R) (X = P, B) and MHB(R) consist of
constant functions (cf. [4]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let ΔM = ΔR,M and ΔM
1 = Δ

R,M
1

the Martin boundary of R and the minimal Martin boundary on R, respectively. We refer to [1]
for the details about the Martin boundary. Denote by hp(R) (1 ≤ p ≤ ∞) the harmonic Hardy
space with index p on R (see Definition of harmonic Hardy space in the next section). It is
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well-known that, if 1 ≤ p < q, hq(R) ⊂ hp(R). It is natural to ask when the converse inclusion
relation holds. The purpose of this paper is to answer the question.
Theorem 1. Suppose that R is hyperbolic and 1 < p < q ≤ ∞. Then the followings are
equivalent:
(i) hp(R) = hq(R),
(ii) there exists a nullset N of ΔM with respect to the harmonic measure such that ΔM

1 \N consists
of finitely many points with positive harmonic measure,
(iii) dim hp(R) = dim hq(R) < ∞,
where dim hp(R) is the dimension of the linear space hp(R).
Theorem 2. Suppose that R is hyperbolic, p = 1 and 1 < q ≤ ∞. Then the followings are
equivalent:
(i) h1(R) = hq(R),
(ii) ΔM

1 consists of finitely many points with positive harmonic measure,
(iii) dim h1(R) = dim hq(R) < ∞,
where dim h1(R) is the dimension of the linear space h1(R).

As an immediate consequence of Theorem 2, by the fact that h1(R) = HP(R) and definition
of h∞(R), we obtain the following.
Corollary (cf. [2, Theorem]). Suppose that R is hyperbolic. Then the followings are equiva-
lent:
(i) HP(R) = HB(R),
(ii) ΔM

1 consists of finitely many points with positive harmonic measure,
(iii) dim HP(R) = dim HB(R) < ∞,
where dim HP(R) is the dimension of the linear space HP(R).

2. Preliminaries

In this section we state several propositions in order to prove theorems in §1 in the next
section. Denote by ωM

z (·) the harmonic measure on ΔM with respect to z ∈ R. We also denote
by kζ(z) ((ζ, z) ∈ (R∪ΔM)×R) the Martin kernel on R with pole at ζ. The following proposition
plays fundamental role in the proof of Theorem 2.
Proposition 1 (cf. [1, Hilfssatz 13.3]). Let ζ belong to ΔM

1 . Then the Martin kernel kζ(·) with
pole at ζ is bounded on R if and only if the harmonic measure ω·({ζ}) of the singleton {ζ} is
positive.

The next proposition follows from the Martin representation theorem which is the most
fundamental theorem in the Martin theory.
Proposition 2. Let u be an element in HP(R). There exists a signed measure μ on ΔM such that
μ(ΔM \ ΔM

1 ) = 0 and u =
∫
ΔM

1
kξdμ(ξ).

Proof of Proposition 2. Let u be an element in HP(R). By definition of HP(R) there exist ele-
ments u1 and u2 of HP+(R) with u = u1 − u2 on R. By the Martin representation theorem(cf. [1,
Satz 13.1]) we find the Radon measure μ j ( j = 1, 2) on ΔM such that μ j(ΔM \ΔM

1 ) = 0 ( j = 1, 2)
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and u j =
∫
ΔM

1
kξdμ j(ξ) ( j = 1, 2). Set μ = μ1 − μ2. Then μ is a signed measure on ΔM .We have

μ(ΔM \ ΔM
1 ) = μ1(ΔM \ ΔM

1 ) − μ2(ΔM \ ΔM
1 ) = 0 − 0 = 0

and

u = u1 − u2 =

∫
ΔM

1

kξdμ1(ξ) −
∫
ΔM

1

kξdμ2(ξ) =
∫
ΔM

1

kξdμ(ξ).

We have the desired result.

Definition (cf. [3, Definition in p.437 and Theorem 4]). Let p ≥ 1. Set

hp(R) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{u | u is harmonic on R and |u|p has a harmonic majorant on R}, for p ≥ 1,

HB(R), for p = ∞.
We call hp(R) the harmonic Hardy space with index p on R. We remark that h1(R) = HP(R)

and that, if 1 ≤ p < q ≤ ∞, hq(R) ⊂ hp(R).
Proposition 3 (cf. [3, Definition in p.437 and Theorems 4 and 6]). Let p be a real number with
1 < p < ∞. Fix a point z0 of R. The next conditions are equivalent.

(i) u ∈ hp(R),
(ii) u has the minimal fine limit u∗(ζ) at almost every point ζ(∈ ΔM

1 ) with respect to the
harmonic measure ωM

z0
such that u(z) =

∫
ΔM

1
u∗(ζ)dωM

z (ζ), and
∫
ΔM

1
|u∗(ζ)|pdωM

z0
(ζ) < ∞.

Set hp+(R) := hp(R) ∩ HP+(R). By the above proposition it is easily seen that hp(R) =
hp+(R) − hp+(R) and hp+(R) ⊂ MHB+(R).

3. Proof of Theorems

3.1 Proof of Theorem 1
First we consider q � ∞. Let p and q be real numbers with 1 < p < q. Suppose that (i) holds.

Fix a point z0 of R. Further we suppose that there exists a point ζ ∈ ΔM such that, for any positive
ρ, ωM

z0
(Uρ(ζ)) > 0 and ωM

z0
({ζ}) = 0, where Uρ(ζ) is the disc with center ζ and radius ρ with

respect to the standard metric on R ∪ ΔM
1 . Hence, there exists a monotone decreasing sequence

{ρn} with limn→∞ ρn = 0, ωM
z0

(Uρn (ζ) \ Uρn+1 (ζ)) > 0 and ωM
z0

(Uρn (ζ)) ≤ 1/n2q/(q−p) (n ∈ N). Set

f ∗(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ωM

z0
(Uρn (ζ) \ Uρn+1 (ζ))]−1/q, for ξ ∈ Uρn (ζ) \ Uρn+1 (ζ),

0, for ξ ∈ ΔM \ Uρ1 (ζ).

And set f (z) =
∫
ΔM

1
f ∗(ξ)dωM

z (ξ). Then, we find that f has a minimal fine limit f ∗(ξ) at almost

every point ξ ∈ ΔM
1 with respect to ωM

z0
. Hence, we have

∫
ΔM

1

f ∗(ξ)qdωM
z0

(ξ) =
∞∑

n=1

[ωM
z0

(Uρn (ζ) \ Uρn+1 (ζ))]−1ωM
z0

(Uρn (ζ) \ Uρn+1 (ζ))

=

∞∑
n=1

1 = ∞,
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and ∫
ΔM

1

f ∗(ξ)pdωM
z0

(ξ) =
∞∑

n=1

[ωM
z0

(Uρn (ζ) \ Uρn+1 (ζ))]−p/qωM
z0

(Uρn (ζ) \ Uρn+1 (ζ))

=

∞∑
n=1

[ωM
z0

(Uρn (ζ) \ Uρn+1 (ζ))]1−p/q

≤
∞∑

n=1

[ωM
z0

(Uρn (ζ) \ Uρn+1 (ζ))](q−p)/q

≤
∞∑

n=1

1/n2 < ∞.

By Proposition 3 we find that f ∈ hp(R)\hq(R). By (i) this is a contradiction. Hence, if ζ(∈ ΔM)
satisfies that, for any positive ρ, ωM

z0
(Uρ(ζ)) > 0, ωM

z0
({ζ}) > 0. By the above fact, it holds that

there exists a nullset N of ΔM with respect to ωM
z0

such that ΔM
1 \N consists of at most countably

many points with positive harmonic measure. To see this set

N = {ζ ∈ ΔM | there exists a positive ρζ with ωM
z0

(Uρζ (ζ)) = 0}
and set F = ΔM \ N. Clearly F ∪ N = ΔM , F ∩ N = ∅ and, for any ζ ∈ F, ωM

z0
({ζ}) > 0. Hence F

is an at most countable subset of ΔM
1 because ωM

z0
(ΔM \ ΔM

1 ) = 0. Hence it is sufficient to prove
that ωM

z0
(N) = 0. Set O = ∪ζ∈NUρζ (ζ). Clearly O is an open subset of R ∪ ΔM and O ∩ ΔM = N.

By the Lindelöf theorem there exists a sequence {ξn}∞n=1 of N with O = ∪∞n=1Uρξn (ξn). Hence
ωM

z0
(N) ≤ ωM

z0
(O) ≤ ∑∞n=1 ω

M
z0

(Uρξn (ξn)) = 0, and hence, ωM
z0

(N) = 0.
Suppose that �(ΔM

1 \N) = ℵ0,where �(ΔM
1 \N) is the cardinal number of ΔM

1 \N. Set ΔM
1 \N =

{ζn}∞n=1. Hence there exists a subsequence {ζnl }∞l=1 of {ζn} with ωM
z0

({ζnl }) ≤ 1/l2q/(q−p) (l ∈ N).
Set

g∗(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ωM

z0
({ζnl })]−1/q, for ξ = ζnl ,

0, for ξ ∈ ΔM \ {ζnl }∞l=1.

And set g(z) =
∫
ΔM

1
g∗(ξ)dωM

z (ξ). Then, we find that g has a minimal fine limit g∗(ξ) at almost

every point ξ ∈ ΔM
1 with respect to ωM

z0
. Hence, we have

∫
ΔM

1

g∗(ξ)qdωM
z0

(ξ) =
∞∑

l=1

[ωM
z0

({ζnl })]−1ωM
z0

({ζnl })

=

∞∑
n=1

1 = ∞,
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and ∫
ΔM

1

g∗(ξ)pdωM
z0

(ξ) =
∞∑

l=1

[ωM
z0

({ζnl })]−p/qωM
z0

({ζnl })

=

∞∑
l=1

[ωM
z0

({ζnl })]1−p/q

≤
∞∑

l=1

[ωM
z0

({ζnl })](q−p)/q

≤
∞∑

l=1

1/l2 < ∞.

By Proposition 3 we find that g ∈ hp(R) \ hq(R). By (i) this is a contradiction. Hence, there
exists a nullset N of ΔM with respect to ωM

z0
such that ΔM

1 \ N consists of finitely many points
with positive harmonic measure, and so, we get (ii).

Suppose that (ii) holds. Fix a point z0 of R.We can find a nullset N of ΔM with respect to
ωM

z0
such that ΔM

1 \ N consists of at finitely many points with positive harmonic measure. Let
n0 be the cardinal number of ΔM

1 \ N. Set ΔM
1 \ N = {ζn}n0

n=1. Let p and q be real numbers with
p < q and p > 1. Clearly hq(R) ⊂ hp(R). Take any element of h of hp(R). By definition of hp(R)
h has a minimal fine limit h∗(ξ) at almost every point ξ ∈ ΔM

1 with respect to ωM
z0

such that
h(z) =

∫
ΔM

1
h∗(ξ)dωM

z (ξ) and
∫
ΔM

1
|h∗(ξ)|pdωM

z0
(ξ) < ∞. By (ii) we have

h(z) =
∫
ΔM

1

h∗(ξ)dωM
z (ξ) =

n0∑
n=1

h∗(ζn)ωM
z ({ζn})

and ∫
ΔM

1

|h∗(ξ)|pdωM
z0

(ξ) =
n0∑

n=1

|h∗(ζn)|pωM
z0

({ζn}) < ∞.

Hence dim hp(R) ≤ n0 and |h∗(ζn)| < ∞ (n = 1, . . . , n0). Thus,
∫
ΔM

1

|h∗(ξ)|qdωM
z0

(ξ) =
n0∑

n=1

|h∗(ζn)|qωM
z0

({ζn}) < ∞,

and hence h ∈ hq(R), that is, hp(R) ⊂ hq(R). Hence hp(R) = hq(R). Hence dim hq(R) =
dim hp(R) ≤ n0 < ∞.We get (iii).

Suppose that (iii) holds. Let p and q be real numbers with p < q and p > 1. Since hp(R) and
hq(R) are linear spaces and hq(R) is a subspace of hp(R), by (iii), we find that hp(R) = hq(R).
Hence we get (i).

Next we consider q = ∞. Suppose that (i) holds. Take a real number p′ with p′ > p. Then
HB(R) ⊂ hp′ (R) ⊂ hp(R). By (i) hp′ (R) = hp(R). By the implication: (i)⇒ (ii) in the case that
q � ∞ we get (ii).

Suppose that (ii) holds. Fix a point z0 of R.We can find a nullset N of ΔM with respect to ωM
z0

such that ΔM
1 \N consists of finitely many points with positive harmonic measure. Let n0 be the

cardinal number of ΔM
1 \N. Set ΔM

1 \N = {ζn}n0
n=1. Clearly HB(R) ⊂ hp(R). Take any element h of
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hp(R). By definition of hp(R) we find that h(z) =
∫
ΔM

1
h∗(ξ)dωM

z (ξ) and
∫
ΔM

1
|h∗(ξ)|pdωM

z0
(ξ) < ∞.

By (ii) we have

h(z) =
∫
ΔM

1

h∗(ξ)dωM
z (ξ) =

n0∑
n=1

h∗(ζn)ωM
z ({ζn})

and ∫
ΔM

1

|h∗(ξ)|pdωM
z0

(ξ) =
n0∑

n=1

|h∗(ζn)|pωM
z0

({ζn}) < ∞.

Hence dim hp(R) ≤ n0 and |h∗(ζn)| < ∞ (n = 1, . . . , n0). Thus, h ∈ HB(R), that is, hp(R) ⊂
HB(R). Hence hp(R) = HB(R). Hence dim HB(R) = dim hp(R) ≤ n0 < ∞.We get (iii).

Suppose that (iii) holds. Since hp(R) and HB(R) are linear spaces and HB(R) is a subspace
of hp(R), by (iii), we find that hp(R) = HB(R). Hence we get (i).

Therefore we have the desired result.

3.2 Proof of Theorem 2
First we consider q � ∞. Suppose that (i) holds, that is, HP(R) = hq(R) (q > 1). Let h be

a minimal harmonic function on R. Clearly h ∈ HP+(R). By (i) h ∈ HP+(R) ∩ hq(R) = hq+(R).
Since hq+(R) ⊂ MHB+(R), h ∈ MHB+(R). Thus there exists a monotone increasing sequence
{hn}∞n=1 of HB+(R) such that hn � 0 (n ∈ N) and limn→∞ hn = h on R. By minimality of h there
exists a positive constant α such that h = αh1 on R. Hence h is bounded on R. Let ζh be the
element of ΔM

1 coressponding to h. Fix a point z0 of R. Since h is minimal, there exists a positive
constant β with h = βkζh . Hence, because h is bounded on R, by Proposition 1 we find that the
harmonic measure ωM

z0
({ζh}) of {ζh} is positive. Hence, ΔM

1 consists of at most countably many
points with positive harmonic measure.

Suppose that �ΔM
1 = ℵ0. Set ΔM

1 = {ζn}∞n=1. Hence there exists a subsequence {ζnl }∞l=1 of
{ζn}∞n=1 with ωM

z0
({ζnl }) ≤ 1/l2q/(q−1) (l ∈ N). Set

g∗(ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[ωM

z0
({ζnl })]−1/q, for ξ = ζnl ,

0, for ξ ∈ ΔM \ {ζnl }∞l=1.

And set g(z) =
∫

g∗(ξ)dωM
z (ξ). Then we have
∫

g∗(ξ)qdωM
z0

(ξ) =
∞∑

l=1

[ωM
z0

({ζnl })]−1ωM
z0

({ζnl })

=

∞∑
n=1

1 = ∞,
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and ∫
g∗(ξ)dωM

z0
(ξ) =

∞∑
l=1

[ωM
z0

({ζnl })]−1/qωM
z0

({ζnl })

=

∞∑
l=1

[ωM
z0

({ζnl })]1−1/q

≤
∞∑

l=1

[ωM
z0

({ζnl })](q−1)/q

≤
∞∑

l=1

1/l2 < ∞.

By Proposition 3 we find that g ∈ MHB(R) \ hq(R). Since HP(R) ⊃ MHB(R), by (i), this is a
contradiction. Hence ΔM

1 consists of finitely many points with positive harmonic measure, and
so, we get (ii).

Suppose that (ii) holds. Let n0 be the cardinal number of ΔM
1 . Set ΔM

1 = {ζn}n0
n=1. Let q > 1.

Clearly hq(R) ⊂ HP(R). Take any element h of HP(R). By Proposition 2 we find a signed
measure μ on ΔM that μ(ΔM \ ΔM

1 ) = 0 and h(z) =
∫
ΔM

1
ωM

z ({ξ})dμ(ξ). By (ii) we have

h(z) =
∫
ΔM

1

ωM
z ({ξ})dμ(ξ) =

n0∑
n=1

ωM
z ({ζn})μ({ζn}) =

∫
ΔM

1

μ({ξ})dωM
z (ξ)

and

|μ({ζn})| < ∞ (n = 1, . . . , n0).

Fix a point z0 of R.We have
∫
ΔM

1

|μ({ξ})|qdωM
z0

(ξ) =
n0∑

n=1

|μ({ζn})|qωM
z0

({ζn}) < ∞.

Hence dim HP(R) ≤ n0 and by Proposition 3, h ∈ hq(R), that is, HP(R) ⊂ hq(R). Hence
HP(R) = hq(R). Hence dim hq(R) = dim HP(R) ≤ n0 < ∞.We get (iii).

Suppose that (iii) holds. Let q > 1. Since HP(R) and hq(R) are linear spaces and hq(R) is a
subspace of HP(R), by (iii), we find that HP(R) = hq(R). Hence we get (i).

Next we consider q = ∞. Suppose that (i) holds, that is, HB(R) = HP(R). Let q′ > 1. Since
HB(R) ⊂ hq′ (R) ⊂ HP(R), hq′ (R) = HP(R). By the implication: (i)⇒ (ii) in the case that q � ∞
we get (ii).

Suppose that (ii) holds. Let n0 be the cardinal number of ΔM
1 . Set ΔM

1 = {ζn}n0
n=1. Clearly

HB(R) ⊂ HP(R). Take any element h of HP(R). By Proposition 2 we find a signed measure μ
on ΔM such that μ(ΔM \ ΔM

1 ) = 0 and h(z) =
∫
ΔM

1
ωM

z ({ξ})dμ(ξ). By (ii) we have

h(z) =
∫
ΔM

1

ωM
z ({ξ})dμ(ξ) =

n0∑
n=1

μ({ζn})ωM
z ({ζn}).

Hence dim HP(R) ≤ n0 and h ∈ HB(R), that is, HP(R) ⊂ HB(R). Hence HP(R) = HB(R).
Hence dim HB(R) = dim HP(R) ≤ n0 < ∞.We get (iii).
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Suppose that (iii) holds. Since HP(R) and HB(R) are linear spaces and HB(R) is a subspace
of HP(R), by (iii), we find that HP(R) = HB(R). Hence we get (i).

Therefore we have the desired result.
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いつ双曲的リーマン面上の異なる指数をもつ調和ハーディ
空間は同一の集合になるか?

――還暦を祝して石田久教授に捧げる――

正　　岡　　弘　　照

要　旨

Rを双曲的（グリーン関数が存在する）リーマン面とする。1 ≤ p < q ≤ ∞を仮定する。この論文では,調
和ハーディ空間 hp(R)と hq(R)が同一の集合であるための特徴づけをRのマルチン境界 ΔM の言葉で与える。
ΔM

1 をRのミニマルマルチン境界とする。p > 1の場合, hp(R)と hq(R)が同一の集合であるための必要十分条
件はΔM の部分集合 N が存在して,その ΔM 上の調和測度は 0で, ΔM

1 \ N が有限個のΔM 上の調和測度が正
の点からなることである。p = 1である場合, h1(R)と hq(R)が同一の集合であるための必要十分条件はΔM

1 が
有限個のΔM 上の調和測度が正の点からなることである。

キーワード：双曲的リーマン面,調和ハーディ空間,マルチン境界,ミニマルマルチン境界,調和測度


