When do the harmonic Hardy spaces with distinct indices coincide
on a hyperbolic Riemann surface?

Dedicated to Professor Hisashi Ishida on his sixtieth birthday

Hiroaki MASAOKA

Received October 5, 2007,
Revised January 15, 2008

Abstract

Let R be a hyperbolic Riemann surface. Suppose that 1 < p < g < co. In this paper
we give a characterization that two harmonic Hardy spaces £,(R) and h,(R) coincide with
each other by using the term of the Martin boundary AM of R. Let A¥ be the minimal Martin
boundary of R. In the case that p > 1 it holds that /,(R) coincides with h,(R) if and only if
there exists a nullset N of AM with respect to the harmonic measure such that A’l” \ N consists
of finitely many points with positive harmonic measure. In the case that p = 1 it holds that
hi(R) coincides with h,(R) if and only if A} consists of finitely many points with positive
harmonic measure.

Keywords: hyperbolic Riemann surface, harmonic Hardy space, Martin boundary, minimal
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1. Introduction

Denote by Og the class of open Riemann surfaces R such that there exist no Green’s func-
tions on R. We say that an open Riemann surface R is parabolic (resp. hyperbolic) if R belongs
(resp. does not belong) to Og.

For an open Riemann surface R, we denote by HP.(R) and HB.(R) the classes of non-
negative harmonic functions and non-negative bounded harmonic functions on R, respectively.
Denote by MH B, (R) the class of all finite limit functions of monotone increasing sequences of
HB.(R). Set HX(R) = HX.(R)— HX.(R) (X = P, B), where HX,(R)—HX,.(R) = {hi —hy | hj €
HX,(R) (j = 1,2) }, and MHB(R) = MHB.(R) — MHB.(R). Then, HB(R) are the class of
bounded harmonic functions on R. MHB(R) is called the class of quasi-bounded functions
on R. It is well-known that if R is parabolic, then HX(R) (X = P, B) and MHB(R) consist of
constant functions (cf. [4]).

Hereafter, we consider only hyperbolic Riemann surfaces R. Let AM = ARM and AM = ATY
the Martin boundary of R and the minimal Martin boundary on R, respectively. We refer to [1]
for the details about the Martin boundary. Denote by /,(R) (1 < p < oo) the harmonic Hardy
space with index p on R (see Definition of harmonic Hardy space in the next section). It is
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well-known that, if 1 < p < g, hy(R) C h,(R). It is natural to ask when the converse inclusion
relation holds. The purpose of this paper is to answer the question.
Theorem 1. Suppose that R is hyperbolic and 1 < p < g < oo. Then the followings are
equivalent:
(D) hp(R) = hy(R),
(ii) there exists a nullset N of AM with respect to the harmonic measure such that A’lw \N consists
of finitely many points with positive harmonic measure,
(iii) dim 1,(R) = dim hy(R) < oo,
where dim h,(R) is the dimension of the linear space h,(R).
Theorem 2. Suppose that R is hyperbolic, p = 1 and 1 < q < co. Then the followings are
equivalent:
(i) h1(R) = hy(R),
(i1) AZIW consists of finitely many points with positive harmonic measure,
(iii) dim /1 (R) = dim /14(R) < oo,
where dim hy(R) is the dimension of the linear space hi(R).
As an immediate consequence of Theorem 2, by the fact that /;(R) = HP(R) and definition
of he(R), we obtain the following.
Corollary (cf. [2, Theorem]). Suppose that R is hyperbolic. Then the followings are equiva-
lent:
(i) HP(R) = HB(R),
(i1) Ajlw consists of finitely many points with positive harmonic measure,
(iii) dim HP(R) = dim HB(R) < oo,
where dim HP(R) is the dimension of the linear space HP(R).

2. Preliminaries

In this section we state several propositions in order to prove theorems in §1 in the next
section. Denote by wé” (-) the harmonic measure on AM with respect to z € R. We also denote
by k;(2) (({,z) € (RU AM)x R) the Martin kernel on R with pole at /. The following proposition
plays fundamental role in the proof of Theorem 2.

Proposition 1 (cf. [1, Hilfssatz 13.3]). Let { belong to AIIW . Then the Martin kernel k;(-) with
pole at { is bounded on R if and only if the harmonic measure w.({{}) of the singleton {(} is
positive.

The next proposition follows from the Martin representation theorem which is the most
fundamental theorem in the Martin theory.

Proposition 2. Let u be an element in HP(R). There exists a signed measure yu on A such that

HAM N\ AM) = 0 and u = fA?ﬂ kedu(é).

Proof of Proposition 2. Let u be an element in HP(R). By definition of HP(R) there exist ele-
ments u; and u, of HP,(R) with u = u; — u on R. By the Martin representation theorem(cf. [1,
Satz 13.1]) we find the Radon measure y; (j = 1,2) on AM such that (A \AY) = 0 (j = 1,2)
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and u; = fAM kedu (&) (j =1,2). Set u = g — po. Then p is a signed measure on AM . We have
A\ AN = 1y (AM\ A — A\ AY) =0-0=0
and
U=u —uy = f kfd,u](f) - f kfd,ug(f) = f kgd/.l(f)
AY AY Ay
We have the desired result.

Definition (cf. [3, Definition in p.437 and Theorem 4]). Let p > 1. Set

®) {{u | u is harmonic on R and |u|” has a harmonic majorant on R}, for p > 1,

HB(R), for p = co.

We call h,(R) the harmonic Hardy space with index p on R. We remark that 7(R) = HP(R)
and that, if 1 < p < g < 00, hy(R) C hp(R).
Proposition 3 (cf. [3, Definition in p.437 and Theorems 4 and 6]). Let p be a real number with
1 < p < co. Fix a point zo of R. The next conditions are equivalent.

(Duce hp(R)’

(1) u has the minimal fine limit u*({) at almost every point {(€ AM) with respect to the
harmonic measure u) such that u(z) = fAM u ({)da)M({) and fAM [ee* ({)V’d(u &) < co.

Set h, (R) := h (R) N HP.(R). By the above proposition 1t is easily seen that h,(R) =
hp+(R) = hp(R) and hp (R) € MHB,(R).

3. Proof of Theorems

3.1 Proof of Theorem 1

First we consider g # oo. Let p and g be real numbers with 1 < p < g. Suppose that (i) holds.
Fix a point zo of R. Further we suppose that there exists a point / € AY such that, for any positive
0> Wy (Up(g)) > 0 and w; ({{}) = 0, where U,({) is the disc with center ¢ and radius p with
respect to the standard metric on R U AM Hence, there exists a monotone decreasing sequence
{on} With limy e pu = 0, W (U, (D) \ U,,., () > 0 and (U, () < 1/n*/ P (n € N). Set

&) = (W (Up (D \ Uy, ()14, foré e Uy (O)\ Uy, (),
’ for& € AM\ U, ().

And set f(z) = fAM f *(f)dwé” (). Then, we find that f has a minimal fine limit f*(£) at almost
every point £ € AY with respect to w!!. Hence, we have

00

f [1©%dwl@) = Z s Up, O\ Uy, (O @ (U, (D \ Up,,, ()
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and

fA @Al @) = Y kU, () \ Up, (O 0 (U, (O Uy, ()
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l/n2 < 00,
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=

By Proposition 3 we find that f € h,(R)\ h,(R). By (i) this is a contradiction. Hence, if {(€ AM)
satisfies that, for any positive p, w (U ) > 0, w; ({{ } > 0. By the above fact, it holds that
there exists a nullset N of AM with respect to wZO such that All"’ \ N consists of at most countably
many points with positive harmonic measure. To see this set

N = {¢ € AM| there exists a positive p; with wZ(Up! ) =0}

andset F = A\ N. Clearly FUN = A¥, FAN = 0 and, for any / € F,w% {¢) > 0. Hence F
is an at most countable subset of A}’ because w!!(AM \ AY) = 0. Hence it is sufficient to prove
that w¥(N) = 0. Set O = Ugen U, (). Clearly O is an open subset of RU AY and O N AM = N.
By the Lindelof theorem there exists a sequence {£,}> | of N with O = Uz Up,, (&,). Hence
WY (N) < (0) < 352 WM(U,, (&) = 0, and hence, w¥ (N) =

Suppose that $(A}\N) = 8o, where §(A¥\ N) is the cardinal number of AY\N. Set AY\N =
{Z,}2,. Hence there exists a subsequence {£, }7°, of {£,} with w({Z,}) < 1/12‘7/(‘7 P (] € N).
Set

n=1

« _ [wg/)l({,(n/})]_]/q’ fOI‘f = fn,,
g = ”
> for & € AM\{du )12,

And set g(z) = fAM g*(f)dw?” (). Then, we find that g has a minimal fine limit g*(¢) at almost

every point £ € A} with respect to w?'. Hence, we have

fA 8 @dwl(©) = Z[w (A ()

n=1
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and

fA §EPdoll@ = ) [N (6Dl ()
= > [ ()P

< D g, henl

By Proposition 3 we find that g € h,(R) \ h,(R). By (i) this is a contradiction. Hence, there
exists a nullset N of AM with respect to a)?;’ such that All” \ N consists of finitely many points
with positive harmonic measure, and so, we get (ii).

Suppose that (ii) holds. Fix a point zo of R. We can find a nullset N of AM with respect to
wg{ such that AIIW \ N consists of at finitely many points with positive harmonic measure. Let
ny be the cardinal number of AY \ N. Set AY \ N = {£,}" . Let p and g be real numbers with
p <qand p > 1. Clearly h,(R) C h,(R). Take any element of 4 of /,(R). By definition of /,(R)
h has a minimal fine limit 4*(¢) at almost every point ¢ € A} with respect to w"o” such that

h(z) = fA,IV, h*(f)dwff’(f) and fA']W |h*(§)|pdw§f(§) < oo. By (ii) we have

hz) = fA R @A) = ) h G (15)
1 n=1

and

no

fAM I @ dwll (&) = Z B (G (1)) < eo.
1 n=1

Hence dim £2,(R) < ng and |h*({,)| < o0 (n = 1,...,nop). Thus,

no
fA Ol © = Y Ih @I W4 < o,
1 n=1
and hence h € hy(R), that is, h,(R) C hy(R). Hence h,(R) = hy(R). Hence dim#h,(R) =
dim 1,(R) < ng < co. We get (iii).

Suppose that (iii) holds. Let p and g be real numbers with p < g and p > 1. Since 4,(R) and
hy(R) are linear spaces and h,(R) is a subspace of h,(R), by (iii), we find that h,(R) = hy(R).
Hence we get (i).

Next we consider g = co. Suppose that (i) holds. Take a real number p’ with p’ > p. Then
HB(R) C hy(R) C hy(R). By (i) hyy(R) = h,(R). By the implication: (i) = (ii) in the case that
q # oo we get (ii).

Suppose that (ii) holds. Fix a point zy of R. We can find a nullset N of AM with respect to w

20
such that AIIW \ N consists of finitely many points with positive harmonic measure. Let g be the

cardinal number of AY\N. Set AY\N = {£,}" . Clearly HB(R) C h,(R). Take any element h of
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hp(R). By definition of /2,(R) we find that h(z) = [,,, h*(€)dw! (£) and [, |1 ()P dw () < eo.
By (ii) we have l l

no

W= [ @l = Y1)
A11‘4 n=1

and

o

[ weraie - DI Erolian <o

Hence dim /,(R) < ng and |A*({,)| < oo (n = 1,...,n9). Thus, h € HB(R), that is, h,(R) C
HB(R). Hence h,(R) = HB(R). Hence dim HB(R) = dim h,(R) < ny < co. We get (iii).
Suppose that (iii) holds. Since h,(R) and HB(R) are linear spaces and HB(R) is a subspace
of h,(R), by (iii), we find that 1,(R) = HB(R). Hence we get (i).
Therefore we have the desired result.

3.2 Proof of Theorem 2

First we consider g # oo. Suppose that (i) holds, that is, HP(R) = hy(R) (g > 1). Let h be
a minimal harmonic function on R. Clearly » € HP.(R). By (i) h € HP.(R) N hy(R) = hy.(R).
Since hy(R) € MHB.(R), h € MHB.(R). Thus there exists a monotone increasing sequence
{hy),?, of HB,(R) such that &, # 0 (n € N) and lim,,_,, &, = h on R. By minimality of & there
exists a positive constant « such that # = ah; on R. Hence & is bounded on R. Let {j, be the
element of A11u coressponding to /. Fix a point zy of R. Since & is minimal, there exists a positive
constant 8 with h = ﬁk{] Hence, because / is bounded on R, by Proposition 1 we find that the
harmonic measure w {&n)) of {4} s positive. Hence, AM consists of at most countably many
points with positive harmomc measure.

Suppose that §AY = 8. Set AY = {£,}°2,. Hence there exists a subsequence {{,}72, of
{Zal2, with wy ({g“,,,}) < 1/P96@=D (1 e N). Set

n l/q f = Cny»
f@_& ML DI, for =¢

for & € AM\ (G2,

And set g(z) = f g*(f)dwé” (¢). Then we have

MS

f g dwy () [ (2 D] 2 (120, ))
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and
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By Proposition 3 we find that g € MHB(R) \ hy(R). Since HP(R) > MHB(R), by (i), this is a
contradiction. Hence A11VI consists of finitely many points with positive harmonic measure, and
so, we get (ii).

Suppose that (i) holds. Let ng be the cardinal number of A}, Set A} = {,} . Let ¢ > 1.
Clearly h,(R) C HP(R). Take any element h of HP(R). By Proposition 2 we find a signed
measure g on A that u(AM \ AY) = 0 and h(z) = fA’." M ({€)du(é). By (ii) we have

h) = fA o (EDdu@ = ) oM (G hudn) = fA L H(EDdo @)
1 n=1 1

and

(gDl < 00 (n=1,...,no).

Fix a point zo of R. We have

fAM l(EDlidwll @) = Z A& gy (4} < eo.

n=1
Hence dim HP(R) < ng and by Proposition 3, h € hy(R), that is, HP(R) C hy(R). Hence
HP(R) = hy(R). Hence dim /,(R) = dim HP(R) < ng < oo. We get (iii).

Suppose that (iii) holds. Let ¢ > 1. Since HP(R) and h,(R) are linear spaces and /,(R) is a
subspace of HP(R), by (iii), we find that HP(R) = hy(R). Hence we get (i).

Next we consider g = co. Suppose that (i) holds, that is, HB(R) = HP(R). Let ¢’ > 1. Since
HB(R) C hy(R) C HP(R), hy (R) = HP(R). By the implication: (i) = (ii) in the case that g # oo
we get (ii).

Suppose that (ii) holds. Let ng be the cardinal number of All” . Set Ai” = {{,,}20:1. Clearly
HB(R) c HP(R). Take any element & of HP(R). By Proposition 2 we find a signed measure u
on AM such that pu(AM \ AIIW) =0and h(z) = fA,]W wé"’({g—“})dy(g—“). By (ii) we have

o) = [ olEDdu© = Y ol e,
n=1

1
Hence dim HP(R) < ng and h € HB(R), that is, HP(R) ¢ HB(R). Hence HP(R) = HB(R).
Hence dim HB(R) = dim HP(R) < ny < co. We get (iii).
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Suppose that (iii) holds. Since HP(R) and HB(R) are linear spaces and HB(R) is a subspace
of HP(R), by (iii), we find that HP(R) = HB(R). Hence we get (i).
Therefore we have the desired result.
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