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Abstract
We consider the nonlocal analogue of the Fisher equation
wy=pxu—u+u(l —u),

where p is a probability distribution. We show that if an initial disturbance extends widely,
then the disturbance spreads. Further, we give a formula of the spreading speeds.
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1. Introduction

In 1930, Fisher [8] introduced the reaction-diffusion equation u; = u,, + u(l — u) as a
model for the spatial spread of an advantageous form of a single gene in a population. He
[9] found that there is a constant ¢, such that the equation has a traveling wave solution with
speed ¢ when ¢ > ¢, while it has no such solution when ¢ < c¢,. Kolmogorov, Petrovsky and
Piskunov [16] obtained the same conclusion for a monostable equation u, = u,, + f(u) with
a more general nonlinearity f, and investigated long-time behavior of this model. Since these
pioneering works, there have been extensive studies on traveling waves and long-time behavior
for monostable evolution systems.

In this paper, we consider the following nonlocal analogue of the Fisher equation:

up=pxu—u+u(l—u). (1.1)

Here, u is a Borel-measure on R with u(R) = 1 and the convolution is defined by

(u * u)(x) = f u(x = y)du(y)
yeR

for a bounded and continuous function # on R. We would show that if an initial disturbance
extends widely, then the disturbance spreads with certain speeds c., which are formulated in
Theorem 1. The main result of this paper is the following:

Theorem 1. Suppose u((0, +00)) # 0 and there is a positive constant A satisfying f) . eWMdu(y) <
+o00. Let two nonnegative constants c_ and c,. be defined by

1 u
c- = inf gl f} L€ du(y)
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and

1
:=inf — +y )
¢+ =inf 5 LRe du(y)

Then, c, > 0 and the following two hold:

(1) Let T be a positive constant, and I’ an open interval which contains [—c_, +c.]. Suppose
that a continuous function uy on R has a compact support and 0 < uy(x) < 1 holds for all
x € R. Then, the solution u(t, x) to (1.1) with u(0, x) = ug(x) satisfies

lim sup u(nt,ntx) = 0.
N0 eR\I

(i) Let T be a positive constant, and I'" a closed interval which is contained in (—c_, +c.).
For any o > 0, there exists r > 0 satisfying the following. Suppose that ug is a continuous
function on R, 0 < ug(x) < 1 holds for all x € R and o < uy(x) holds for all x € [—r, +r]. Then,
the solution u(t, x) to (1.1) with u(0, x) = uy(x) satisfies

lim inf u(nt,ntx) = 1.

n—oo xel”

In order to prove Theorem 1, we employ theorems by Weinberger [25]. We do not assume
that the probability measure yu is absolutely continuous with respect to the Lebesgue measure.
For example, not only the integro-differential equation

1
@(I, X) = f u(t, x — y)dy — u(t, x)*
ot 0

but also the discrete Fisher equation

a—”(r, x) = ut,x— 1) — u(t, x)°
ot
satisfies the assumption of Theorem 1.
See, e.g., [1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27,
28] on traveling waves and long-time behavior in various monostable evolution systems, [2, 4]

nonlocal bistable equations and [20] the Euler equation.
2. Proof of Theorem 1

Let BC(R) denote the Banach space of bounded and continuous functions on R with the
supremum norm.

We first state that the time 7 map of the semiflow generated by some nonlocal equation is
continuous with respect to the compact-open topology.
Lemma 2. Let 7 be a positive constant, i a Borel-measure on R and g a Lipschitz continuous
function on R. Suppose there exists a positive constant A satisfying fy = e;”“d/ft(y) < +oo, Let
i, cC ([0, 7], BC(R)) be a sequence of solutions to the equation

Vi = fx v+ g(v).
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Suppose sup,ay e [Va(0, X)| < +oo. Then, v,(0,x) — vo(0,x) as n — oo uniformly in x on
every bounded interval implies v, (1, x) — vo(T, X) as n — oo uniformly in x on every bounded
interval.

Proof. See, e.g., Proposition 19 in [28]. O

The following is the main technical result, and it is proved in Section 3.
Lemma 3. Let 7 be a positive constant and i a Borel-measure on R. Suppose there exists a
positive constant A satisfying fy R e;”)'|d/ft(y) < +00. Let P : BC(R) —» BC(R) be the time T
map of the flow on BC(R) generated by the linear equation

Ve =[x, 2.1
Then, there exists a Borel-measure ¥ on R with #(R) < +co such that
Pvl=9x*v

holds for all v € BC(R). Further, the equality
log f eVdv(y) = ( f e")’dﬁ(y)) T 2.2)
yeR yeR
holds for all A € R.

Let B denote the set of continuous functions # on R with 0 < u < 1.

We could obtain the following by the comparison theorem.
Lemma 4. Let T be a positive constant and u a Borel-measure on R with u(R) = 1. Let
P: BC(R) = BC(R) be the time T map of the flow on BC(R) generated by the linear equation

Ve =%V 2.3)
and Q : B — B the time T map of the semiflow on B generated by the Fisher equation
vy =,u*v—v2. 2.4)

Then, the following two hold:
(1) The inequality

Olu] < Plu]
holds for allu € B.
(ii) For any 6 € (0, 1), there exists € € (0, 1) such that for any u € Bwith 0 < u < g, the
inequality
(1 = 6)Plu] < Qlu]
holds.

Proof. By the comparison theorem between (2.3) and (2.4), we have Q[u] < Plu] forallu € B.
We take a positive constant € as

£ := min {(—l log(1 - 6)) e, l} .
T 2
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Let a function u € B satisfy 0 < u < e. Then, we take the solution v(¢, x) with v(0, x) = u(x) to
the linear equation

v =,u>x<v+(%log(1 —6))v. (2.5)
So, we have
(1 = 6)(Plul)(x) = v(z, x).
Because
0<v(t x)<ee < (—% log(1 — 6))

holds for all ¢ € [0, 7], we see

(% log(1 — 5)) v(t, x) < —v(t, x)
for all ¢ € [0, 7]. Hence, by the comparison theorem between (2.4) and (2.5),
(1 = 8)(Plul)(x) = v(z, x) < (Qlu])(x)
holds. O

In virtue of Lemmas 2, 3 and 4, we could apply Theorems 6.1, 6.2 and Corollary in Section
6 of [25] to prove Theorem 1.

Proof of Theorem 1. Let P : BC(R) — BC(R) be the time 7 map of the flow on BC(R) gener-
ated by the linear equation

U =p*u

and Q: B — B the time 7 map of the semiflow on B generated by the Fisher equation
wp =k u— ul.

Then, from Lemma 3, there exists a Borel-measure v on R with v(R) < +o0 such that

Plul=v=u (2.6)

holds for all u € BC(R). Further, the equality

log f eVdv(y) = ( f et d,u(y))T
yeR yeR

holds for all A € R. From this equality, we have
1
" i=cr=inf -1 v
¢l =cr=inf y og £€Re av(y)
and

* L _ 1 +Ay
¢, = C”‘ﬁ‘lﬁjl"gf e 7dv(y).

yeR
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By Lemma 4 and (2.6), the inequality
Olul < Plul =v=*u

holds for all # € B. For any 6 € (0, 1), there exists £ € (0, 1) such that for any u € B with
0 < u < g, the inequality

(I =0y +u=(1-06)Plu] < Qlu]

holds. From Lemma 2, with my := 0, 7y := 1 and H := R, we also see that Q satisfies the
hypotheses (3.1) in [25]. Therefore, with N := 1 and SV -1 := (%1}, we obtain the conclusion
of Theorem 1 by applying Theorems 6.1, 6.2 and Corollary in Section 6 of [25], because of
[-ci,+cil ctl’ and TI” C (=cZ, +ch). O

3. Proof of Lemma 3

[Step 1] In this step, we show the following: There exists a Borel-measure ¥ on R with
Y(R) < 400 such that
Plvl=v=v
holds for all v € BC(R).
Put a functional P: BC(R) —» R as
P[v] := (PIV])(0).

Then, the functional P is linear, bounded and positive. Hence, there exists a Borel-measure v
on R with ¥(R) < +oo such that if a function v € BC(R) satisfies limy v(x) = 0, then

Plv] = f v(y)dv(y) (3.1
yeR

holds.
Let v € BC(R). Then, there exists a sequence {v,}”; € BC(R) with sup, . (g [Va(X)| < +00

n=1
and limyy_,c v,(x) = O for all n € N such that v, — v as n — oo uniformly on every bounded

interval. From Lemma 2, (3.1) and v(R) < +oo0, we have

P[] = lim P[v,] = lim f Va(M)dv(y) = f V)dV().
n—oo n—oo y R yE

€ R
We take a Borel-measure ¥ on R with #(R) < +co such that
V((=00,y)) = ¥((=y, +o0))

holds for all y € R. Then, for any v € BC(R), we have

P = P[v(- + )] = f Wy + 0d(y) = (1)),

yeR

[Step 2] We show the following: The equality (2.2) holds when A = 0.
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Because

ol 1m0
is a solution to (2.1), by Step 1, we see
f 1d0) = (9 1)(0) = (PLI(O) = el 40
yeR
[Step 3] We show the following: The equality
f eVd¥(y) = lim (P[min{e™*, n}])(0)
yeR n—oo

holds for all 1 € R.

In virtue of Step 1, we have

f eVdd(y) = lim min{e®, n}d¥(y)
yER

n—- Jiep

= lim (¥ * min{e~*, n})(0) = lim (P[min{e ", n}])(0).

n—oo

[Step 4] We show the following: If a constant A € R\ {0} satisfies f} R eYdji(y) < +oo, then
the equality (2.2) holds.

Let X be the set of continuous functions # on R with sup lutx)

T+e~x

< +oo. Then, X is a

Banach space with the norm ||ully := sup,x I‘Z(e)f)j‘x. We have

el < su fyeR lu(x = y)ldfa(y)
pe il = Xe]g l+e ™

< sup f =Dy oyaa)

xeR JyeR 1+ e

< ( f 1+ ely)dﬁ(y)) [
yER

Let Py : X — X be the time 7 map of the flow on X generated by the linear equation (2.1).
Suppose 4 > 0. Let A€ (0, 2). Then, we see

-Ax
. . iy -2 . 4
lim || min{e™*", n} — e ||y < lim sup —
n—oo n—oo xe(—oo,—% log ) 1 + e
< lim sup Y =,
n—oeo ,\te(—oo,—/fll logn)

Hence, by Step 3,

f Vdi(y) = lim (PImin{e™, n)])(0)
\ER n—oo

 tim (Pylmin{e™™, n]1)(0) = (Pyle"1)(0) = ebbex ")

n—oo

because

e(f}'e}& ei}'dﬁ@))l—;lx
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is a solution to (2.1). So, we have

f i) =tim [ i) = timelha " FON 2 a0
yeR AT Jyer ara
When A < 0, we could also prove it almost similarly as A > 0.

[Step 5] It is sufficient to conclude the proof of Lemma 3, if we show that ﬂ . eMYdi(y) =
+00 implies f\ o €VdV(Y) = +oo.

For each n € N, let P, : BC(R) — BC(R) be the time 7 map of the flow on BC(R)
generated by the linear equation

Ve = [l *V, (3.2)
where [i,, is the Borel-measure on R such that
An((=00,y)) = fi((—c0,y) N (=n, +n))

holds for all y € R. Then, in virtue of Step 1, there exists a Borel-measure ¥, on R with
V,(R) < 400 such that

holds for all v € BC(R). Further, by Steps 2 and 4, we also have

log f Vi) = ( f eb'dﬂn(y))r: ( f e"’dﬂ(y))f.
yeR yeR YE(=n,+n)

Therefore, because a nonnegative solution to (3.2) is a sub-solution to (2.1), by Step 3, we
obtain the inequality

m—-oo

f eVdd(y) = lim (P[min{e™", m}])(0)
yeR

> lim (i)n [mil’l{g’/lx’ m}])(o) = lim min{e/ly, m}d\,}n(y)
m—oco s ) e
= f e/lydi)n(y) = g(fve(—n.m ed'vdﬁ(y))r
yeR
for all n € N. Hence, [ e"dp(y) = +oo implies [ eVd?(y) = +co. O
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