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Abstract

We consider the nonlocal analogue of the Fisher equation

ut = μ ∗ u − u + u(1 − u),

where μ is a probability distribution. We show that if an initial disturbance extends widely,
then the disturbance spreads. Further, we give a formula of the spreading speeds.
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1. Introduction

In 1930, Fisher [8] introduced the reaction-diffusion equation ut = uxx + u(1 − u) as a
model for the spatial spread of an advantageous form of a single gene in a population. He
[9] found that there is a constant c∗ such that the equation has a traveling wave solution with
speed c when c ≥ c∗ while it has no such solution when c < c∗. Kolmogorov, Petrovsky and
Piskunov [16] obtained the same conclusion for a monostable equation ut = uxx + f (u) with
a more general nonlinearity f , and investigated long-time behavior of this model. Since these
pioneering works, there have been extensive studies on traveling waves and long-time behavior
for monostable evolution systems.

In this paper, we consider the following nonlocal analogue of the Fisher equation:

ut = μ ∗ u − u + u(1 − u). (1.1)

Here, μ is a Borel-measure on R with μ(R) = 1 and the convolution is defined by

(μ ∗ u)(x) :=
∫

y∈R
u(x − y)dμ(y)

for a bounded and continuous function u on R. We would show that if an initial disturbance
extends widely, then the disturbance spreads with certain speeds c±, which are formulated in
Theorem 1. The main result of this paper is the following:
Theorem 1. Suppose μ((0,+∞)) � 0 and there is a positive constant λ satisfying

∫
y∈R eλ|y|dμ(y) <

+∞. Let two nonnegative constants c− and c+ be defined by

c− := inf
λ>0

1
λ

∫
y∈R

e−λydμ(y)
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and

c+ := inf
λ>0

1
λ

∫
y∈R

e+λydμ(y).

Then, c+ > 0 and the following two hold:
(i) Let τ be a positive constant, and I′ an open interval which contains [−c−,+c+]. Suppose

that a continuous function u0 on R has a compact support and 0 ≤ u0(x) < 1 holds for all
x ∈ R. Then, the solution u(t, x) to (1.1) with u(0, x) ≡ u0(x) satisfies

lim
n→∞ sup

x∈R\I′
u(nτ, nτx) = 0.

(ii) Let τ be a positive constant, and I′′ a closed interval which is contained in (−c−,+c+).
For any σ > 0, there exists r > 0 satisfying the following. Suppose that u0 is a continuous
function on R, 0 ≤ u0(x) ≤ 1 holds for all x ∈ R and σ ≤ u0(x) holds for all x ∈ [−r,+r]. Then,
the solution u(t, x) to (1.1) with u(0, x) ≡ u0(x) satisfies

lim
n→∞ inf

x∈I′′
u(nτ, nτx) = 1.

In order to prove Theorem 1, we employ theorems by Weinberger [25]. We do not assume
that the probability measure μ is absolutely continuous with respect to the Lebesgue measure.
For example, not only the integro-differential equation

∂u
∂t

(t, x) =
∫ 1

0
u(t, x − y)dy − u(t, x)2

but also the discrete Fisher equation

∂u
∂t

(t, x) = u(t, x − 1) − u(t, x)2

satisfies the assumption of Theorem 1.
See, e.g., [1, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27,

28] on traveling waves and long-time behavior in various monostable evolution systems, [2, 4]
nonlocal bistable equations and [20] the Euler equation.

2. Proof of Theorem 1

Let BC(R) denote the Banach space of bounded and continuous functions on R with the
supremum norm.

We first state that the time τ map of the semiflow generated by some nonlocal equation is
continuous with respect to the compact-open topology.
Lemma 2. Let τ be a positive constant, μ̂ a Borel-measure on R and g a Lipschitz continuous
function on R. Suppose there exists a positive constant λ̂ satisfying

∫
y∈R eλ̂|y|dμ̂(y) < +∞. Let

{vn}∞n=0 ⊂ C1([0, τ], BC(R)) be a sequence of solutions to the equation

vt = μ̂ ∗ v + g(v).
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Suppose supn∈N,x∈R |vn(0, x)| < +∞. Then, vn(0, x) → v0(0, x) as n → ∞ uniformly in x on
every bounded interval implies vn(τ, x) → v0(τ, x) as n → ∞ uniformly in x on every bounded
interval.

Proof. See, e.g., Proposition 19 in [28]. �

The following is the main technical result, and it is proved in Section 3.
Lemma 3. Let τ be a positive constant and μ̂ a Borel-measure on R. Suppose there exists a
positive constant λ̂ satisfying

∫
y∈R eλ̂|y|dμ̂(y) < +∞. Let P̂ : BC(R) → BC(R) be the time τ

map of the flow on BC(R) generated by the linear equation

vt = μ̂ ∗ v. (2.1)

Then, there exists a Borel-measure ν̂ on R with ν̂(R) < +∞ such that

P̂[v] = ν̂ ∗ v

holds for all v ∈ BC(R). Further, the equality

log
∫

y∈R
eλydν̂(y) =

(∫
y∈R

eλydμ̂(y)
)
τ (2.2)

holds for all λ ∈ R.
Let B denote the set of continuous functions u on R with 0 ≤ u ≤ 1.
We could obtain the following by the comparison theorem.

Lemma 4. Let τ be a positive constant and μ a Borel-measure on R with μ(R) = 1. Let
P : BC(R)→ BC(R) be the time τ map of the flow on BC(R) generated by the linear equation

vt = μ ∗ v (2.3)

and Q : B → B the time τ map of the semiflow on B generated by the Fisher equation

vt = μ ∗ v − v2. (2.4)

Then, the following two hold:
(i) The inequality

Q[u] ≤ P[u]

holds for all u ∈ B.
(ii) For any δ ∈ (0, 1), there exists ε ∈ (0, 1) such that for any u ∈ B with 0 ≤ u ≤ ε, the

inequality

(1 − δ)P[u] ≤ Q[u]

holds.

Proof. By the comparison theorem between (2.3) and (2.4), we have Q[u] ≤ P[u] for all u ∈ B.
We take a positive constant ε as

ε := min
{(
−1
τ

log(1 − δ)
)

e−τ,
1
2

}
.
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Let a function u ∈ B satisfy 0 ≤ u ≤ ε. Then, we take the solution v(t, x) with v(0, x) ≡ u(x) to
the linear equation

vt = μ ∗ v +
(
1
τ

log(1 − δ)
)

v. (2.5)

So, we have

(1 − δ)(P[u])(x) ≡ v(τ, x).

Because

0 ≤ v(t, x) ≤ εet ≤
(
−1
τ

log(1 − δ)
)

holds for all t ∈ [0, τ], we see (
1
τ

log(1 − δ)
)

v(t, x) ≤ −v(t, x)2

for all t ∈ [0, τ]. Hence, by the comparison theorem between (2.4) and (2.5),

(1 − δ)(P[u])(x) ≡ v(τ, x) ≤ (Q[u])(x)

holds. �

In virtue of Lemmas 2, 3 and 4, we could apply Theorems 6.1, 6.2 and Corollary in Section
6 of [25] to prove Theorem 1.

Proof of Theorem 1. Let P : BC(R)→ BC(R) be the time τ map of the flow on BC(R) gener-
ated by the linear equation

ut = μ ∗ u

and Q : B → B the time τ map of the semiflow on B generated by the Fisher equation

ut = μ ∗ u − u2.

Then, from Lemma 3, there exists a Borel-measure ν on R with ν(R) < +∞ such that

P[u] = ν ∗ u (2.6)

holds for all u ∈ BC(R). Further, the equality

log
∫

y∈R
eλydν(y) =

(∫
y∈R

eλydμ(y)
)
τ

holds for all λ ∈ R. From this equality, we have

c∗− := c−τ = inf
λ>0

1
λ

log
∫

y∈R
e−λydν(y)

and

c∗+ := c+τ = inf
λ>0

1
λ

log
∫

y∈R
e+λydν(y).
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By Lemma 4 and (2.6), the inequality

Q[u] ≤ P[u] = ν ∗ u

holds for all u ∈ B. For any δ ∈ (0, 1), there exists ε ∈ (0, 1) such that for any u ∈ B with
0 ≤ u ≤ ε, the inequality

(1 − δ)ν ∗ u = (1 − δ)P[u] ≤ Q[u]

holds. From Lemma 2, with π0 := 0, π1 := 1 and H := R, we also see that Q satisfies the
hypotheses (3.1) in [25]. Therefore, with N := 1 and S N−1 := {±1}, we obtain the conclusion
of Theorem 1 by applying Theorems 6.1, 6.2 and Corollary in Section 6 of [25], because of
[−c∗−,+c∗+] ⊂ τI′ and τI′′ ⊂ (−c∗−,+c∗+). �

3. Proof of Lemma 3

[Step 1] In this step, we show the following: There exists a Borel-measure ν̂ on R with
ν̂(R) < +∞ such that

P̂[v] = ν̂ ∗ v

holds for all v ∈ BC(R).
Put a functional P : BC(R)→ R as

P[v] := (P̂[v])(0).

Then, the functional P is linear, bounded and positive. Hence, there exists a Borel-measure ν
on R with ν(R) < +∞ such that if a function v ∈ BC(R) satisfies lim|x|→∞ v(x) = 0, then

P[v] =
∫

y∈R
v(y)dν(y) (3.1)

holds.
Let v ∈ BC(R). Then, there exists a sequence {vn}∞n=1 ⊂ BC(R) with supn∈N,x∈R |vn(x)| < +∞

and lim|x|→∞ vn(x) = 0 for all n ∈ N such that vn → v as n → ∞ uniformly on every bounded
interval. From Lemma 2, (3.1) and ν(R) < +∞, we have

P[v] = lim
n→∞ P[vn] = lim

n→∞

∫
y∈R

vn(y)dν(y) =
∫

y∈R
v(y)dν(y).

We take a Borel-measure ν̂ on R with ν̂(R) < +∞ such that

ν̂((−∞, y)) = ν((−y,+∞))

holds for all y ∈ R. Then, for any v ∈ BC(R), we have

(P̂[v])(x) ≡ P[v(· + x)] ≡
∫

y∈R
v(y + x)dν(y) ≡ (ν̂ ∗ v)(x).

[Step 2] We show the following: The equality (2.2) holds when λ = 0.
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Because

e
(∫

y∈R 1dμ̂(y)
)
t

is a solution to (2.1), by Step 1, we see∫
y∈R

1dν̂(y) = (ν̂ ∗ 1)(0) = (P̂[1])(0) = e
(∫

y∈R 1dμ̂(y)
)
τ
.

[Step 3] We show the following: The equality∫
y∈R

eλydν̂(y) = lim
n→∞(P̂[min{e−λx, n}])(0)

holds for all λ ∈ R.
In virtue of Step 1, we have∫

y∈R
eλydν̂(y) = lim

n→∞

∫
y∈R

min{eλy, n}dν̂(y)

= lim
n→∞(ν̂ ∗min{e−λx, n})(0) = lim

n→∞(P̂[min{e−λx, n}])(0).

[Step 4] We show the following: If a constant λ ∈ R \ {0} satisfies
∫

y∈R eλydμ̂(y) < +∞, then
the equality (2.2) holds.

Let X be the set of continuous functions u on R with supx∈R
|u(x)|

1+e−λx < +∞. Then, X is a
Banach space with the norm ‖u‖X := supx∈R

|u(x)|
1+e−λx . We have

‖μ̂ ∗ u‖X ≤ sup
x∈R

∫
y∈R |u(x − y)|dμ̂(y)

1 + e−λx

≤ sup
x∈R

∫
y∈R
|u(x − y)|

1 + e−λ(x−y) (1 + eλy)dμ̂(y)

≤
(∫

y∈R
(1 + eλy)dμ̂(y)

)
‖u‖X .

Let P̂X : X → X be the time τ map of the flow on X generated by the linear equation (2.1).
Suppose λ > 0. Let λ̄ ∈ (0, λ). Then, we see

lim
n→∞ ‖min{e−λ̄x, n} − e−λ̄x‖X ≤ lim

n→∞ sup
x∈(−∞,− 1

λ̄
log n)

e−λ̄x

1 + e−λx

≤ lim
n→∞ sup

x∈(−∞,− 1
λ̄

log n)
e(λ−λ̄)x = 0.

Hence, by Step 3,∫
y∈R

eλ̄ydν̂(y) = lim
n→∞(P̂[min{e−λ̄x, n}])(0)

= lim
n→∞(P̂X[min{e−λ̄x, n}])(0) = (P̂X[e−λ̄x])(0) = e

(∫
y∈R eλ̄ydμ̂(y)

)
τ
,

because

e
(∫

y∈R eλ̄ydμ̂(y)
)
t−λ̄x
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is a solution to (2.1). So, we have∫
y∈R

eλydν̂(y) = lim
λ̄ ↑ λ

∫
y∈R

eλ̄ydν̂(y) = lim
λ̄ ↑ λ

e
(∫

y∈R eλ̄ydμ̂(y)
)
τ
= e

(∫
y∈R eλydμ̂(y)

)
τ
.

When λ < 0, we could also prove it almost similarly as λ > 0.
[Step 5] It is sufficient to conclude the proof of Lemma 3, if we show that

∫
y∈R eλydμ̂(y) =

+∞ implies
∫

y∈R eλydν̂(y) = +∞.

For each n ∈ N, let P̂n : BC(R) → BC(R) be the time τ map of the flow on BC(R)
generated by the linear equation

vt = μ̂n ∗ v, (3.2)

where μ̂n is the Borel-measure on R such that

μ̂n((−∞, y)) = μ̂((−∞, y) ∩ (−n,+n))

holds for all y ∈ R. Then, in virtue of Step 1, there exists a Borel-measure ν̂n on R with
ν̂n(R) < +∞ such that

P̂n[v] = ν̂n ∗ v

holds for all v ∈ BC(R). Further, by Steps 2 and 4, we also have

log
∫

y∈R
eλydν̂n(y) =

(∫
y∈R

eλydμ̂n(y)
)
τ =

(∫
y∈(−n,+n)

eλydμ̂(y)
)
τ.

Therefore, because a nonnegative solution to (3.2) is a sub-solution to (2.1), by Step 3, we
obtain the inequality∫

y∈R
eλydν̂(y) = lim

m→∞(P̂[min{e−λx,m}])(0)

≥ lim
m→∞(P̂n[min{e−λx,m}])(0) = lim

m→∞

∫
y∈R

min{eλy,m}dν̂n(y)

=

∫
y∈R

eλydν̂n(y) = e
(∫

y∈(−n,+n) eλydμ̂(y)
)
τ

for all n ∈ N. Hence,
∫

y∈R eλydμ̂(y) = +∞ implies
∫

y∈R eλydν̂(y) = +∞. �
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非局所フィッシャー方程式における擾乱の伝播速度

柳　　下　　浩　　紀

要　旨

本論文では，非局所フィッシャー方程式

ut = μ ∗ u − u + u(1 − u)

を考察する．ここで，μは確率分布である．初期の擾乱が広範囲に渡れば擾乱が伝播していくことを示し，
さらに伝播速度の公式を与える．

キーワード：合成積モデル，微分積分方程式，離散単安定方程式，非局所単安定方程式，非局所フィッシャー・
KPP方程式


