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Abstract

Follmer and Leukert ([2, 3]) investigated the quantile hedging problem and the shortfall
risk hedging problem for options of stocks. In the first part of this paper, the quantile hedging
problems for options of bonds and for caplets are formulated. We derive a formula of the
success probability for Ho-Lee bond model with the market price of risk y, which is equal to
ot + ¢ where o is the volatility and ¢ is a constant. Furthermore a lower bound of the success
probability is calculated for caplets with the market price of risk y, which is equal to ot + c.

In the second part of this paper the shortfall risk problems for options of bonds and for
caplets are formulated. We give a formula of the minimal expected shortfall for Ho-Lee bond
model with the constant market price of risk.
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1. Preliminaries

In this section we summarize the results of Follmer and Leukert ([2, 3]), that is, quantile
hedging and optimal partial hedging with the expected shortfall for stocks.

For the terminology, see the papers of Follmer and Leukert ([2, 3]). Assume that a market is
arbitrage-free and complete. Let B, be the cash bond. Let X; be a discounted stock price which
is a semimartingale under (Q, 7, P) with filtration {#}¢[o,7].

A self-financing strategy is defined by an initial capital V; and by a predictable process
& which is an itegrand for the semimartingale {X;}. A self-financing strategy (Vp,¢) is called
admissible if the process V defined by

15
Vi=Vy +f &dX, te€[0,T], P-a.s.
0

satisfies V; > O forallt € [0,T], P — a.e..

Let P* be the unique equivalent martingale measure. Let H be a discounted non-negative
contingent claim at a claim time-horizon T; H € L'(P*), Fr—measurable. Completeness im-
plies that there exists a perfect hedge, i.e. a predictable process & such that

!
Ep-[H|F;] = Hy + f &dX, forall 1e[0,T], P-ae.
0
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Let Hy = Ep-[H] which is the worth of the contingent claim at time 0.

A quantile hedging problem with the initial cost V is as follows:
Fix the initial cost Vo(< Hp). Find an admissible strategy (Vp, &) such that

T
P[Vy +f &idX > H] = max (%)
0

under the constraint V, < V.

The set {Vy + fOT &,dX; > H} is called a success set. Let Q* be a probability measure such
that
dQ* H
a” "~ Hy
Theorem 1 (Féllmer & Leukert ([2])). Assume that A = {3 > aH) satisfies Q[A] = ,Z—g Let
(Vo, €) be the perfect hedge for the knockout option HI; where I;(w) = 1 if w € A, and = 0 if
wéA.
Then (Vj, ) solves the optimal Problem (*). Furthermore the success set for (Vy, £) is equal
toA P-ae.

An optimal partial hedging problem with the expected shortfall with the initial cost V is
as follows:
Fix the initial cost V(< Hp). Find an admissible strategy (Vy, &) such that

E[(H - V7)"] = min ()
under the constraint Vi < V, where Vy = Vj + fOT &dX

The excess (H — V7)™ is called a shortfall.
Let Q and Q" be probability measures such that

Q_ H . dQ _H

= an _ = .
dP E[H] dP*  H

Applying the Neyman Pearson lemma to Q and Q*, we obtain the following theorem.

Theorem 2 (Follmer & Leukert ([3])). Assume that A = {4 > a} satisfies Q*[A] = X—‘[’) Let
(Vo, &) be the the perfect hedge for the knockout option HI;. Then (Vj,£) solves the optimal
Problem (x).

2. Quantile hedging for bond options

In this section the quantile hedging problems for options of bonds are formulated. We
derive an explicit formula of the success probability for Ho-Lee bond model with the market
price of risk y, which is equal to of + ¢ where c is a constant. First we summarize the facts of
the Ho-Lee bond model for bonds with the market price of risk y,. See Baxter [1].
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The Ho-Lee bond model with the market price of risk y, under P
Fact 1. the forward rate

df(t,T) = cdW, + (0*(T — 1) + oy,)dt
Fact 2. the bond prices

0_2

T t
P(t,T) = exp (~{o(T = OW, + f FO.uydu + —-T(T =Dt + o(T = 1) f ¥.ds))
t 0
Fact 3. the cash bond

! ! 1 i3
B, = exp (o f Wids + f £(0, w)du + g<72z3+ f o(t — s)y,ds)
0 0 0

Fact 4. the derivative ‘(li—l;:

dP* t ! ,y2
—exp(= | yaw,— | La
ap — &P( j; Y fo 5 4%)

where P* is the unique equivalent martingale measure.
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A discounted option H, = (P(t,T) — k)*/B, on T-bond (i.e., with maturity T), struck at k

with exercise time ¢, is worth
Ho = Ep-[H] = Ep.[B;'(P(t,T) — k)*]

at time 0.
Note that

T 2
P(t,T) = exp(~{o(T - W, + f £(0, u)du + %T(T -0t}

! !
1
B, = exp((ff Wids + f S0, wydu + 60-2t3)
0 0

where W} = W, + fot vsds which is a P*-Brownian motion. Then H is evaluated (cf. [1]) by

log £ + 30X(T — 1)t log £ = 30X(T — 1)t
Hy = PO, H{Fa( kU(Tz_ oV ) - ko "(T(;_ v )

where

CPO.T)_exp(— [ f(0,udu)
P(O, t) exp( _ ﬁ)t f(O, u)du)

and @ is the distribution function of the standard normal distribution.

Fix Vo(< Hp). A quantile hedging of the above bond call option with the initial cost Vo is

calculated as follows (cf. Section 1 and [2]):
The success set A is

dP

A ={

dpP +
F >aH} _{Btﬁ >a(P(t,T)—k) }
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where
dp ! t
B~ = exp(@ f Wids + f ¥sdWy + a; (1))
dp 0 0
P(t,T) = exp(-o(T = W, + ax(1))
t 1 ; ’ ’yZ‘
a\(1) = f £(0, u)du + —a*’ +f o—(t—s)ysds+f Ys as
0 6 0 0 2
and

T 2 t
ar(t) = —( f F(0, wydu + %T(T — i+ (T —1) f yds).
t 0
For further investigation, we assume that
y.&‘ = a-s,

that is, the market price of risk vy, is propotional to time s with the volatility o.

Then
13 I3
o-f Wds + f ysds = otW,
0 0
and so
dpP
B’F =exp (otW; + a;(1))
and
P, T)=exp(—o(T — )W, + ax(?))
=exp(—o(T - W, + a5(0)
where

ai(t) = f fO,u)du + l0'2t3,
0 2
T o2
a) (1) = - f fO,u)du - 7(T =0T +1),

T 0_2
as() = — ft SO, u)du ~ —-T(T = 1y

Denoting P(t,T) by P;, we have
dP

A= \qpe > aH) = (P77 > a(P - ky*) = (P, < c).

To determine the constant ¢, we use the constraint condition

Vo = Ep-[HI,]
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where H = By '(P(t,T) — k)*. So we have

Vo = Ep-[H] — Ep:[HI{p 5]

log £ + 10T - 1)t log £ - 10T - 1)t
= P(0, T){FO® — k®
( ){ ( o(T - D)Vt ) o(T — )Vt
~ Fq)(logg + 30T - t)zt) . kq)(lo £_LloXT -0k }
o (T — )t o(T — )Vt
where

_ PO,7)
~ PO,

Now P(A) is calculated by

P(A) = P(P, < ¢)

B logc — ax (1)
=PEWi <=7 )

o (log ct 7 £0,updu + TIHID )
B (T — Vi '

From the above discussions, we obtain the following proposition.

Proposition 1 (Quantile hedging for bond options). Under the Ho-Lee model, let assume that
vs = os. Consider a quantile hedging problem for a bond call option on T-bond , struck at k
with exercise time t such that a discounted option value H is (P(t,T) —k)*/B,. Then for a given
Vo(< Hy), we have the probability of the success set A

10gc+f,Tf(0’“)d“+ w)
o(T =)Vt

where @ is the distribution function of the standard normal ditribution N(0, 1) . The constant c

P(4) = @

is given by
log £ + Lo2(T = )%t log £ — Lo2(T = 1)%¢
P(O,T)(FCD( Chi ) — kd( gx 20T -0
(T — Vi (T — Vi
log £ + LoX(T - 1%t log £ — Lo2(T - )%t
_ Fa g <+ 30 ))+kc1>( g - ( ) )
o(T — )Vt o(T — )Vt
=~0
with

_PO.T) _ exp (= [y SO.0)du)
PO.D exp (= [ £(0,u)du)

T
:exp(—f (0, u)du).
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3. Quantile hedging for caplets

In this section we deal with quantile hedging for caplets. Let 6 > 0. A §-caplet is a contin-
gent claim 6 X (L(T — 6) — k)* with exercise time T where L(T — §) is the -period LIBOR rate
set at time T — ¢ and k is the fixed rate, and so

H = B;'(L(T - 6) - k)*.
The time-0 value of the caplet is
Hy = Ep-[B;'6(L(T - 6) — k)*].
Note that

ST -68) -k =P(T -6T)" -1-ko)*
=(1+kS)P(T =6,T) (1 +k&)™' = P(T = 6,T)*.
Let K = (1 + k6)~!. We have
Hy = (1 + k6)Ep-[B;' P(T = 6,T) (K — P(T - 6,T))*]
= (1 + k6)Ep:[Ep-[B;' P(T - 6, T) (K — P(T - 6, T))"|Fr_s]]
= (1 + k6)Ep-[B;L5(K — P(T - 6,T))"]
log £ — 1(06)(T - 0) o108 £+ L(eo)X(T -9)

g%
= 1+ koK coNT =7 i)
where
PO, T)
PO, T-0)

Fix Vo(< Hp). A quantile hedging of the above caplet with the initial cost V is approxi-
mately calculated as follows:
The success set A is
dpP

A:{F>QH}

= {% > aB; (P(T - 6,T)"" = (1 + k6))*}

_ E _ -1 _ +
= {BTdP* >a(P(T = 6,T)" = (1 +k&))*}.

We will approximate the set A by A where

dpP

A = {EP* [BTF

TT_(;} >a(P(T-6,T)"' -1+ 1«5))+}.

Let us consider again the case where

Vs = OS.
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Then by Fact 4,
BT% =exp(cTWr + ai(T))
= exp (O'TW; -oT j(;T vds + al(T)).
It holds that
Ep. [Br;i—g'?}_(s] = exp (o-TW}f(; + 0-22TZ(5
—-oT £T§ ysds — w + al(T))
= exp (T Wr_s + fo ' FOwdu + ZTT _2” i 52)).
By Fact 2,
P(T —6,T)"" = exp (06Wr_s — ax(T — 6))
=exp (coWyr_s + j;: f(O,u)du + oI - ?QT — 6))

=exp (c6Wy_s — a5(T — 6))
Denote P(T —6,T)~! by P}l_ s- Our approximating success set A has the form
A=((P' )% > aPrly — (1 + ko))
The calculation goes as Follmer and Leukert ([2] Section 3). Note that 0 < § < T. We have
A={Pl 5, <1} UP > o)
={Wr_s <bi} U{Wr_s > b}

where ¢y, ¢3, by, b, are some constants.
From the above discussions, we obtain the following proposition.

Proposition 2 (Quantile hedging for caplets). Under the Ho-Lee model, let assume that y, =
os. Consider a quantile hedging problem for a caplet with exercise time T such that the dis-

counted value H is
H = B;'6(I(T - 6) - k)*

where L(T — 9) is the §-period LIBOR rate set at time T — 6.
For a given V(< Hy), the approximate success set A has the form

A={P; 5 <ciyUIP s > co) = (Wr_s < by} U{Wr_s > b))
where ¢y < ¢ are two distict solutions of the equation for P}l s such that

(P7Ly)@ = a(P7l, — (1 + 6k))*
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and where the constant a is determined by the condition Eq[HI;] = Vo. We have
. by b,
P(A) = @ + @ -
==
where ® is the distribution function of the standard normal ditribution N(0, 1) .

It means that

P(A) > P(A) = @ \/;1—_6)”’(‘ 7132_5)

for any optimal success set A, so (I)(‘/%) + (D( - 1;276) is a lower bound of the success
probability.

4. Optimal partial hedging with the expected shortfall for bond options

In Section 2 quantile hedging for the Ho-Lee bond options is considered. In this section
optimal partial hedging with the expected shortfall for the Ho-Lee bond options is investigated.

Fix Vo(< Hp). Minimizing the expected shortfall of the above bond call option with the

initial cost V; is calculated as follows ([2]):

The success set A is

dpP
A= (e
> 9
where
dap ! " y2ds
- _ AW, s
P exp(foy +f0 )
by Fact 4.

For further investigation, we consider the case when
Ys =7

where 7y is a constant, that is the case when the market price of risk is constant.

Then
! ! 2 2
yids vt
AW + — =YW, + —
ﬁ Y K L 3 YW: 3
and so
dp %
ar exp (YW, + 77)
and

P, T)=exp(—o(T — )W, + ax(r))
=exp(—o(T - OW; +a5(1)
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where

T
ar(f) = —f £, u)du — o(T - t)t(%T +7),

. T 0'2
ay(n) = - f FO.udu~ =-T(T = 0.

Denoting P(t,T) by P;, we have
dP
dP*
To determine the constant ¢, we use the constraint condition

Y
A={ >a}={P,""" >a}={P, < c}.
Vo = Ep-[HI4]
where H = By '(P(¢,T) — k)*. It means that

Vo = Ep-[H] — Ep-[HI{p>¢)]
ogF —logk + %O'Z(T - t)zt) ‘D log F —logk — %o-z(T - 0%t

1
= P(0, T){Fa(

o (T — )\t o(T - )Vt
~ F(D(logF —logc+ 30X(T - t)zt) . k(D(logF —logc— $0X(T — 1)t }
(T — )i (T — Vi
where
_ P(0,T)
T OPO,0

Now the minimal expected shortfall L(V;) is calculated by

L(Vo) = Ep[B;'(P(t,T) = k)" Ip>]

G -logc+ 30(T — )t G -logc— 30*(T - 1)t
= B(GD —k®
( ( o \(T -t ) ( o \(T -t )
where
1, 2 !
G = 50’ (T — 0t — f fO,w)du — oy(T — )t
and

!
1
B = exp(—(f f(0, w)du + Ea’ytz)).
0
From the above discussions, we obtain the following proposition.

Proposition 3 (Minimizing the shortfall risk hedging for bond options). Under the Ho-Lee
model, let assume that ys, = y where vy is a constant. Consider a minimizing the expected
shortfall for a bond call option on T-bond , struck at k with exercise time t such that a discounted
option value H is (P(t,T) — k)*/B,.
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Then for a given Vo(< Hy), the minimal expected shortfall

L(Vo) = Ep[B;'(P(t,T) — k)" Ip,>]

G —logc+ 30T - )t G —logc— 1T -1t

= BGo( o NT =01 )~ kef o NT =i )
where
1, 2 !
G = 50’ (T — 0t — f fO,w)du — oy(T — )t
and

B = exp(—( f £0, u)du + %o-ytz)).
0

The constant c is given by

log F —logk + Lo(T - 12t log F —logk — 1a2(T = )%t
P(O’T){Fq)( g gk+ 307 ))_k(D g gk — 30 )

o(T -Vt o(T -Vt
~ F(D(log F-logc+ 1oX(T - t)2t) . kq)(log F—logc—10(T - 1)t }
o(T -Vt o(T - D)Vt
=V
with
_P(O,T) (7
= P00 - exp ( ft (0, u)du).
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