Duplication Closure of Regular Languages

Masami ITO
$\binom{$ Received September 14, 2009, }{ Revised December 2, 2009}

Abstract

In the present paper, we prove that the n-bounded duplication closure of a regular language is regular for $n=1,2$.

Keywords: duplication (closure), n-bounded duplication (closure), regular language, automaton

1. Introduction

Let X be a nonempty finite set, called an alphabet. An element of X is called a letter. By X^{*}, we denote the free monoid generated by X. Let $X^{+}=X^{*} \backslash\{\epsilon\}$ where ϵ denotes the empty word of X^{*}, i.e. the identity of X^{*}. An element of X^{*} is called a word over X. If $u \in X^{*}$, then $|u|$ denotes the length of u, i.e. the number of letters appearing in u. Notice that we also denote the cardinality of a finite set A by $|A|$. Regarding more details on languages, see [2] and [3].
Definition 1. Let $\mathcal{A}=\left(S, X, \delta, s_{0}, F\right)$ where (1) S and X are nonempty finite sets called a state set and an alphabet, respectively, (2) δ is a function called a state transition function such that $\delta(s, a) \in S$ for any $s \in S$ and any $a \in X$, (3) $s_{0} \in S$ called an initial state and (4) $F \subseteq S$ called the set of final states.

Then \mathcal{A} is called a finite automaton.
Notice that the above δ can be extended to the following function in a natural way, i.e. $\delta(s, \epsilon)=s$ and $\delta(s, a u)=\delta(\delta(s, a), u)$ for any $s \in S$, any $u \in X^{*}$ and any $a \in X$.
Definition 2. Let $\mathcal{A}=\left(S, X, \delta, s_{0}, F\right)$ be a finite automaton. Then the language $\left\{u \in X^{*} \mid\right.$ $\left.\delta\left(s_{0}, u\right) \in F\right\}$ is said to be accepted by \mathcal{A} and denoted by $\mathcal{L}(\mathcal{A})$. A language accepted by a finite automaton is called a regular language.

Finite automata can be generalized in the following way.
Definition 3. Let $\mathcal{A}=\left(S, X, \delta, S_{0}, F\right)$ where (1) S and X are nonempty finite sets called a state set and an alphabet, respectively, (2) δ is a relation called a state transition relation such that $\delta(s, a) \subseteq S$ for any $s \in S$ and any $a \in X$, (3) $S_{0} \subseteq S$ called the set of initial state and (4) $F \subseteq S$ called the set of final states.

Then \mathcal{A} is called a nondeterministic automaton.
The above δ can be extended to the following relation in a natural way, i.e. $\delta(s, \epsilon)=\{s\}$ and $\delta(s, a u)=\bigcup_{t \in \delta(s, a)} \delta(t, u)$ for any $s \in S$, any $u \in X^{*}$ and any $a \in X$.

Definition 4. Let $\mathcal{A}=\left(S, X, \delta, S_{0}, F\right)$ be a nondeterministic automaton. Then the language $\left\{u \in X^{*} \mid \exists s_{0} \in S_{0}, \delta\left(s_{0}, u\right) \cap F \neq \emptyset\right\}$ is said to be accepted by \mathcal{A} and denoted by $\mathcal{L}(\mathcal{A})$.

It seems that a language accepted by a nondeterministic automaton is not necessarily regular. However, we have the following result.
Fact. A language accepted by a nondeterministic automaton is regular.
Regarding more details on regular languages and automata, see [2] and [3].
Let $u \in X^{*}$ and let n be a positive integer. Then we introduce operations, called duplication operations. Let $u=v w x$ where $v, w, x \in X^{*}$. Then we denote $u \rightarrow v w w x$ and \rightarrow is called a duplication. Moreover, if $|w| \leq n$ in the above, then we denote $u \rightarrow_{\leq n} u w w x$ and $\rightarrow_{\leq n}$ is called an n-bounded duplication.

By \rightarrow^{*} and $\rightarrow_{\leq n}^{*}$, we denote the reflexive and transitive closures of \rightarrow and $\rightarrow_{\leq n}$, respectively.
Definition 5. Let $u \in X^{*}$ and let n be a positive integer. Then $u^{\triangleright}=\left\{v \in X^{*} \mid u \rightarrow^{*} v\right\}$ and $u^{\rho \leq n}=\left\{v \in X^{*} \mid u \rightarrow_{\leq n}^{*} v\right\}$, called the duplication closure of u and n-bounded duplication closue of u, respectively. Moreover, let n be a positive integer. Then $L^{\triangleright}=\left\{u^{\circ} \mid u \in L\right\}$ and $L^{\rho \leq n}=\left\{u^{\rho \leq n} \mid u \in L\right\}$, called the duplication closure of L and n-bounded duplication closue of L, respectively.

2. 1-Bounded Duplication Closures

In this section, we prove that the 1-bounded duplication closure of a regular language is regular.
Theorem 1. Let $L \subseteq X^{*}$ be a regular language. Then $L^{0 \leq 1}$ is regular.
Proof. Let $\mathcal{A}=\left(S, X, \delta, s_{0}, F\right)$ be a finite automaton accepting L. We construct the following nondeterministic automaton $\overline{\mathcal{A}}=\left(\bar{S}, X, \bar{\delta}, s_{0}, \bar{F}\right)$: (1) $\bar{S}=\left\{s_{a} \mid s \in S, a \in X \cup\{\epsilon\}\right\}$ where s_{ϵ} can be regarded as s. (2) $\bar{F}=\left\{s_{\alpha} \mid \alpha \in X \cup\{\epsilon\}, s \in F\right\}$. (3) $\bar{\delta}\left(s_{\alpha}, a\right)=\left\{\delta(s, a)_{a}\right\} \cup\left\{s_{a} \mid \alpha=a\right\}$ for $\alpha \in X \cup\{\epsilon\}$ and $a \in X$.

Now we prove that $\mathcal{L}(\overline{\mathcal{A}})=L^{0 \leq 1}$. Let $u \in \mathcal{L}(\overline{\mathcal{A}})$. Then u can be represented as follows: $u=u_{1} v_{1} u_{2} v_{2} \cdots u_{r} v_{r}$ where $u_{i}=u_{i}^{\prime} a_{i}, u_{i}^{\prime} \in X^{*}, a_{i} \in X$ and $v_{i} \in a_{i}^{+}$for any $i=1,2, \ldots, r$, and $\delta\left(s_{0}, u_{1} u_{2} \cdots u_{r}\right) \in F$, i.e. $u_{1} u_{2} \cdots u_{r} \in L$. Hence $u \in L^{Q \leq 1}$, i.e. $\mathcal{L}(\overline{\mathcal{A}}) \subseteq L^{0 \leq 1}$.

Now let $u \in L^{\rho \leq 1}$. If $u \in L$, then obviously $u \in \mathcal{L}(\overline{\mathcal{A}})$. Assume that $v \rightarrow_{\leq 1} u$ for some $v \in L^{\rho \leq 1} \cap \mathcal{L}(\overline{\mathcal{A}})$. Then $v=v_{1} a v_{2}, v_{1}, v_{2} \in X^{*}, a \in X$ and $u=v_{1} a^{2} v_{2}$. Let $s_{a} \in \bar{\delta}\left(s_{0}, v_{1} a\right)$ where $s \in S$. Then $s_{a} \in \bar{\delta}\left(s_{0}, v_{1} a a\right)$. Hence $\bar{\delta}\left(s_{0}, v_{1} a v_{2}\right)=\bar{\delta}\left(s_{0}, v_{1} a^{2} v_{2}\right)$, i.e. $u \in \mathcal{L}(\overline{\mathcal{A}})$ and $L^{0 \leq 1} \subseteq \mathcal{L}(\overline{\mathcal{A}})$.

This completes the proof of the theorem.

3. 2-Bounded Duplication Closures

In this section, we prove that the 2-bounded duplication closure of a regular language is regular.
Lemma 1. Let $a, b \in X$. Then $(a b)^{\rho \leq 2}=a\{a, b\}^{*} b$.

Proof. It can be easily shown that the theorem holds true if $a=b$. Hence we assume $a \neq$ b. Let $u \in X^{*}$. If $u=a^{i}, i \geq 0$, then $a b \rightarrow_{\leq 2}^{*} a^{i+1} b=a u b$. If $u=b^{i}, i \geq 0$, then $a b \rightarrow_{\leq 2}^{*} a b^{i+1}=a u b$. If $u=a^{i_{1}} b^{j_{1}} a^{i_{2}} b^{j_{2}} \ldots a^{i_{p}}$ such that $i_{1}, i_{2}, \ldots i_{p}, j_{1}, j_{2}, \ldots j_{p-1} \geq 1$, then $a b \rightarrow_{\leq 2}^{*}(a b)(a b) \cdots(a b) \rightarrow_{\leq 2}^{*} a a^{i_{1}} b^{j_{1}} a^{i_{2}} b^{j_{2}} \cdots a^{i_{p}} b=a u b$. If $u=a^{i_{1}} b^{j_{1}} a^{i_{2}} b^{j_{2}} \cdots a^{i_{p}} b^{j_{p}}$ such that $i_{1}, i_{2}, \ldots, i_{p}, j_{1}, j_{2}, \ldots, j_{p} \geq 1$, then $a b \rightarrow_{\leq 2}^{*}(a b)(a b) \cdots(a b) \rightarrow_{\leq 2}^{*} a^{i_{1}+1} b^{j_{1}} a^{i_{2}} b^{j_{2}} \cdots a^{i_{p}} b^{j_{p}+1}=$ $a u b$. In the same way, we can prove that $a b \rightarrow_{\leq 2}^{*} a u b$ for any $u \in b\{a, b\}^{*}$.
Theorem 2. Let $L \subseteq X^{*}$ be a regular language. Then $L^{Q \leq 2}$ is regular.
Proof. Let $\mathcal{A}=\left(S, X, \delta, s_{0}, F\right)$ be a finite automaton accepting L. We construct the following nondeterministic automaton $\mathcal{B}=\left(T, X, \gamma, T_{0}, G\right)$: (1) $T=\left\{\left[s_{0}\right]_{\# a} \mid a \in X\right\} \cup\left\{[s]_{a b} \mid s \in S, a, b \in\right.$ $X\}$ where \# is a new symbol. (2) $G=\left\{[s]_{a b} \mid a, b \in X, s \in F\right\}$ if $s_{0} \notin F$ and $G=\left\{[s]_{a b} \mid a, b \in\right.$ $X, s \in F\} \cup\left\{\left[s_{0}\right]_{\# a} \mid a \in X\right\}$ if $s_{0} \in F$. (3) $T_{0}=\left\{\left[s_{0}\right]_{\# a} \mid a \in X\right\}$. (4) $\gamma\left(\left[s_{0}\right]_{\# a}, a\right)=\left\{\left[\delta\left(s_{0}, a\right)\right]_{a b} \mid\right.$ $b \in X\}, \gamma\left([s]_{a b}, a\right)=\left\{[s]_{a b}\right\}$ and $\gamma\left([s]_{a b}, b\right)=\left\{[\delta(s, b)]_{b c} \mid c \in X\right\} \cup\left\{[s]_{a b}\right\}$.

Let $a, b \in X$ and let $u, v \in X^{*}$. By Lemma 1 and the structure of the automaton \mathcal{B}, the configuration uabv $\rightarrow_{\leq 2}^{*}$ uaxbv with $x \in\{a, b\}^{*}$ corresponds to $\gamma\left([s]_{a b}, v\right) \subseteq \gamma\left(\left[s_{0}\right]_{\# c}\right.$, uaxbv) where $u \in c X^{*}$ and $s=\delta\left(s_{0}, u a\right)$. Hence it can be proved that $\mathcal{L}(\mathcal{B})=L^{0 \leq 2}$.

Actually, Theorem 2 has been already proved in [5] based on the proposition below. However, the proof was complicated. On the contrary the above proof is simpler and more constructive.
Definition 6. Let $L \subseteq X^{*}$. The following equivalence relation P_{L} on $X^{*} \times X^{*}$ is called the principal congruence on $L: \forall u, v \in X^{*}, u P_{L} v \Leftrightarrow \forall x, y \in X^{*}(x u y \in L \leftrightarrow x v y \in L)$.
Proposition 1. Let $L \subseteq X^{*}$. Then L is regular if and only if the number of equivalence classes is finite.

4. Duplication Closure of a Regular Language over a Binary Alphabet

In this section, we prove that the duplication closure of a regular language over a binary alphabet is regular. By Lemma 1, we can obtain the following lemma.
Lemma 2. Let $X=\{a, b\}$ and let $u \in X^{*}$. Then $u^{\triangleright}=u^{\nu \leq 2}$.
Theorem 3. Let $X=\{a, b\}$ and let $L \subseteq X^{*}$ be regular. Then L^{\triangleright} is regular.
Proof. By Lemma 2, $L^{\rho}=L^{\rho \leq 2}$. It follows from Theorem 2 that L^{ρ} is regular.
Actually, it was proved in [1] that the duplication closure of any language over a binary alphabet is regular. However, Theorem 3 provides concrete relations between languages and their duplication closures for regular languages.

5. Conclusion

In a similar way as before, we can construct a nondeterministic automaton accepting the 3-bounded duplication closure of a regular language (see [4]). Thus we have:
Theorem 4. Let $L \subseteq X^{*}$ be a regular language, Then $L^{\varrho \leq 3}$ is regular.

Acknowledgements

This work was supported by the JSPS-HAS Joint Research Grant and the Grant-in-Aid for Organizing International Conferences from Kyoto Sangyo University. The author also thanks the referees for their useful comments.

References

[1] D.P. Bovet and S. Varricchio, On the regularity of languages on a binary alphabet generated by copying systems, Inf. Process. Lett. 44, 119-123, 1992.
[2] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and and Computation, Addison-Wesley, Reading MA, 1979.
[3] M. Ito, Algebraic Theory of Automata and Languages, World Scientific, Singapore, 2004.
[4] M. Ito, On n-bounded duplication closures of languages, submitted.
[5] M. Ito, P. Leupold and K. Shikishima-Tsuji, Closure of language classes under bounded duplication, Lecture Notes in Computer Science 4036 (Springer, Heidelberg), 238-247, 2006.

正規言語の重複閉包

伊 藤 正 美

要 旨
本論文では，正規言語の 1－有界重複閉包および2－有界重複閉包が正規言語になることを示す。
キーワード：重複（閉包），n－有界重複（閉包），正規言語，オートマトン

