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Abstract

A lonesum matrix is a matrix with entries 0 or 1 which is uniquely determined by its
column sum and row sum. In this paper, we show that the number L(m, n) of m-by-n lonesum

matrices and the poly-Bernoulli number B{™ satisfy the same recurrence relations. Using

these relations, we give a new proof of Brewbaker’s formula L(m, n) = B{™.
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1. Introduction

A lonesum matrix is a matrix with entries 0 or 1 which is uniquely determined by its column
sum and row sum. It is an interesting problem in combinatorial matrix theory to study the
number L(m,n) of m-by-n lonesum matrices. Brewbaker [1] showed that L(m, n) coincides

with the poly-Bernoulli number ]Baf;’”) introduced by Kaneko [3] as a generalization of the

Bernoulli number. The main object of this paper is to prove that L(m, n) and B{™

satisfy the
same recurrence relations. As a by-product, we give a new proof of Brewbaker’s formula.

This paper is organized as follows. Section 2 is of preliminary nature. We recall the defini-
tions of the binomial number and the Stirling subset number. We also recall several fundamental
properties of (0, 1)-matrices. In Section 3, after recalling the definition and basic properties of
lonesum matrices, we give recurrence relations for L(m,n). In Section 4, we recall the def-
inition of poly-Bernoulli numbers and prove recurrence relations for BS™. A new proof of

Brewbaker’s formula is given in Section 5 by combining the results of Sections 3 and 4.

Notation
For a finite set X, we denote by #(X) the cardinality of X. We deneto by Z the set of
nonnegative integers.
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2. Preliminaries

2.1 Binomial numbers and Stirling subset numbers
For m, n € 7Z, we define the binomial number (,’:l) by

n! .
(n):: m 1fn2m20,

m 0 otherwise.

Here we put

\ I1X2%x---xn ifn>1,
n. .=
1 ifn=0.

We easily see that
1
<o) =) ®
m—1 m m

For m,n € Z, we define the Stirling subset number {;‘1} (or the Stirling number of the second
kind) by

{8} b {g} - {,?,} =0 (n,m#0),
o benfrl

When m,n > 0, {"1'1} is equal to the number of ways of partitioning a set of n elements into m

holds for m, n € Zy.

and

nonempty sets. The following fact is well-known.
Proposition 2.1. For m,n € Zsg, we have

-ty
m m! l

Here we make a convention that I° = 1 for | € 7.

2.2 Partitions

Let N be a positive integer and (py, ..., pm) € (Zso)". If p1 > ... > ppand p1+.. .+p, = N,
we call (py, ..., p,y) apartition of N. For s = (sy, ..., $y) € (Zso)" with 51 +- -+ s, = N, there
uniquely exists a partition p = (py, ..., p,) of N such that p; = s,(;) with some permutation o
of {1,...,m}. In this situation, we say that p is the partition of N associated with s.

2.3 (0, 1)-Matrices
A matrix A is called a (0, 1)-matrix if each entry of A is either zero or one. Let B(m, n) be
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the set of m-by-n (0, 1)-matrices. Then #8(m,n) = 2™". The sum of all entries of A = (a;;) €
B(m, n) is denoted by N(A). Namely

m n

N = > i

i=1 j=1
For A € B(m, n), we put

n

CA) 1= (C1(A), .-, enlA)), €i(A) = ) i
j=1

HA) = (M(A), ..., (A, ri(A) = ) ay
i=1
We call c(A) (respectively r(A)) the column (respectively row) sum of A. Note that

m n

D) =) ri(A) = N(A).
i=1 j=1
1

0
A matrix A = (a;;) € B(m,n) is called a Ferrars matrix if the conditions

(1) a,-jzo:akao (kZl),
(ll) a,-,»zO:a,-;zO (lZ])
are satisfied. Denote by ¥ (m, n) the set of m-by-n Ferrars matrices.

0
Example 2.2. If A = ( 0 ), we have c¢(A) = (2,1) and r(A) = (1, 2,0).

Example 2.3.

O = =
S O =
o O O

is a Ferrars matrix.
The following fact is well-known and easily verified.
Proposition 2.4. (1) IfA € ¥ (m, n), c(A) and r(A) are partitions of N(A).
(2) We have

BF (m,n) = (mn: ”)

Let p = (p1, ..., pw) be a partition of N € Z. For a positive integer n, put
T(p) := (Pls- - Pp)s
where
pi=#{jl1<j<m,p;>i).

Then m,(p) is also a partition of N if n > py. If n > py, there uniquely exists an m-by-n Ferrars
matrix A such that ¢(A) = p. For such an A, we have r(A) = 7,(p).
The following fundamental result was shown by Gale [2] and Ryser [6] (see also [5]).
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Theorem 2.5. Let s = (s1,...,8,) € (Zso)" and t = (t1,...,t,) € (Zso)" satisfying s; + --- +
Sm=1ti+-+t, =N. Letp = (p1,...,pm) and q = (q1, . . . , qn) be the partitions of N associated
with s and t respectively, and let n,(p) = (p],...,Pp,). Then there exists an A € B(m,n) such
that c(A) = s and r(A) = t if and only if the following conditions are satisfied:

Py 2 q,

PL+ D2 q1+qo,

pT++p;; qu R
Example 2.6. Let p = (3,1) and ¢ = (2,2,0). Then m3(p) = (2,1, 1) and the condition of
Theorem 2.5 is not satisfied. Thus there is no A € B(2, 3) such that c(A) = p and r(A) = gq.
3. Lonesum matrices
3.1 The definition of lonesum matrices
An m-by-n (0, 1)-matrix A is called a lonesum matrix if the following condition holds:
A’ € B(m,n), c(A") = c(A), r(A) =r(A) = A’ = A.

Namely a lonesum matrix is a (0, 1)-matrix which is uniquely determined by its column sum
and row sum. We denote by L(m, n) the set of m-by-n lonesum matrices.
Example 3.1. We have

1 00
A_( 0 O)e£(2,3).

B=100,C=010
010 1 00

have the same column sum (1, 1) and row sum (1, 1, 0), we have B, C ¢ L(m, n).

On the other hand, since

3.2 Criterions
The following result is due to Ryser [6].
Theorem 3.2. For A € B(m, n), the following conditions are equivalent.
(i) A is a lonesum matrix.

10 0 1
(ii)Ahasnominoroftheform(o l)or(l 0)‘

(iii) A is obtained from a Ferrars matrix by permutations of columns and rows.
(iv) Let p and q be the partitions of N(A) associated with c(A) and r(A), respectively. Then
m(p) = 4.
Corollary 3.3. Let A be a lonesum matrix.
(1) A matrix obtained by permutations of columns and rows of A is a lonesum matrix.
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(2) The transpose of A is a lonesum matrix.

(3) Any minor of A is a lonesum matrix.

3.3 Recurrence relations

5

For m,n € Z.o, we put L(m,n) = #L(m,n). By Corollary 3.3 (2), we have L(m,n) =
L(n, m). We make a convention that L(m,0) = L(0,n) = L(0,0) = 1 (m,n > 0). We now state

one of the main results of this paper.
Theorem 3.4. For m,n € Z~q, we have

m—1 n
Limm) = y (=™ (r:’ ) > (Z)L(r, k).

r=0 k=0

To prove Theorem 3.4, we need several preparations. For 0 < k < n, set
M(m,n, k) :={A € L(m,n) | 1m_in ci(A) =n -k},
<is<m
M(m,n, k) := #M(m, n, k).

Lemma 3.5. We have
L(m, n) = Z M(m, n, k).
k=0
Proof. This follows from

L(m,n) = U M(m,n, k) (disjoint union).
k=0

Theorem 3.4 is a direct consequence of Lemma 3.5 and the following.
Proposition 3.6. We have

m—1

MG n, k) = (Z) -1 )’"”_l(n:)L(r, ).

r=0

To prove the proposition, we fix such a triple (m, n, k) and put
A ={A € M@m,n, k)| c;(A) =n—k} (i=1,...,m).
Note that
Ai={Ae Limn)|c(A)=n—k,cjA)>2n—k (1 <j<m)}

Lemma 3.7.

M(m,n k)= > (=1 T #A NN A,
r=1

1<ij<+<iy<m

m

Proof. This follows from M(m, n, k) = U A; and the inclusion-exclusion argument.

i=1
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Proposition 3.8. we have
WA N NA) = (Z)L(m —r k), (1<iy < <iy <m) )
We postpone the proof of Proposition 3.8 until the next subsection. The equality (2) implies
S #A N NA) = (T)(Z)L(m — k). 3)

1<ij<+<i,<m

Proposition 3.8 now follows from (3) and Lemma 3.7 .

3.4 Proof of Proposition 3.8

Let I = {if,....i;andput I = {1,...,m}\ I = {i\,..., i, ) A <) <--- <i,_. <m). We
denote by J the set of (n — k)—tuples of integers {ji,..., ju—x} With 1 < j; < -+ < j,p < 1.
WeputJe={1,....,n}\ JforJ € 7.

We first suppose that k = n. In this case, A; N --- N A; is the set of A = (a;;) € L(m,n)
witha; j=---=a;;=0(j=1,...,n). Itis easily verifisd that #(A; N---NA; ) = Lm—r,n),
which proves (3.1).

We henceforth suppose that k < n. Suppose that r = m. For J € J, let A’ = (a},) € B(m, n),
where

S 1 ifjel,
Yoo ifjed
Then we have

AN NA, = A NN Ay,
={A € Lim,n)ci(A) =n—k (1 <i<m)}

={A’lJ € J).

Im

Hence

#HA O NA,) = #T = (n " k) = (Z) = (Z)L(O’ k),

which proves (3.1).
Lemma 3.9. Suppose that 1 < r < m.
(1) For A = (a;j) € A;; N -+~ N A, , there exists a unique element J of J such that

a; =1 (1<i<m,jel),
ai,;j =0 (I<a<rjelo.

(2) Let A and J as in (1). Then A" := (a;)i¢1,jes belongs to L(m — 1, k).
(3) The mapping

p: A N--NA, 3A > A € Lim—r,k)
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defined as in (2) is surjective and

n
#(o7'(A)) =
(¢7'a") (k)
forevery A’ € L(m —r,k).
Proof. Let A = (a;j) € A;; N --- N A, . Then there exists an element J of J such that
aiw':l (]GJ),
ai],j=0 (JEJC)

Suppose that there exist i (1 < i <m)and B (1 < B < n— k) with a;j, = 0. Since
¢i(A) > n — k, there exists j € J¢ such that @; ; = 1. Then we have

ai],jﬁ aj,,j _ 1 0

ai,jﬁ a,-,j 0 1 '
This contradicts the assumption that A is a lonesum matrix (cf. Theorem 3.2(2)) and hence we
have proveda;; =1 (1 <i<m,jeJ).

Next suppose that there exist @, j (2 < o <1, j € J°) with g;, ; = 1. Since ¢;,(A) = n -k,
there exists 8 (1 < < n— k) such that a;, j, = 0. Then

ai],jﬁ ai],j _ 1 0
i, gy @i;) 0 1)

a contradiction. Thus we have proved a;, ; = 0 (1 < @ < r, j € J¢), which completes the proof
of the first assertion of the lemma.
The second assertion follows from Corollary 3.3 (3).
For A’ = (a(’yﬁ)lsasm_,,]sﬁsk € L(m—r,k)and J € J, define an m-by-n (0, 1) matrix A = (a;;)
by
1 if j € J,
a;j =40 ifieland je JS,
a;ﬁ ifi=4i,and j = j;j.

Then we have A € ﬂil N---N ‘ﬂi,-' We write w(A"J) for A. Then l,D(l//(A/,])) — A/,
which shows the surjectivity of ¢. By (1), we have ¢ !'(A") = {¢(A’,J)|J € J}, and hence
# '(A) = 4T = (Z) which proves (3).

Proposition 3.8 in the case k < n and r < m is a direct consequene of Lemma 3.9 (3).
4. Poly-Bernoulli numbers

4.1 The definition of poly-Bernoulli numbers
The poly-Bernoulli numbers were introduced by Kaneko ([3]; see also [4]). For every
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integer k, we define the poly-Bernoulli number Bﬁlk) €eQ (n=0,1,...)by
Liy(1—¢e™) _ iB(k)ﬁ

1-e! & ! ’

Here Li;(f) denotes a formal power series Z —.
n=1 n

Theorem 4.1 ([3]).
(1) For n € Zsy and k € Z, we have

B = (—1)" Z

m=0

1y m{}
(m+ DF

In particular, B isa positive integer if k > 0.
(2) For n,k € Zsy, we have

B( k) _ ]B( n)

4.2 Recurrence relations for poly-Bernoulli numbers with negative upper index
We now state the second main result of this paper.
Theorem 4.2. We have

m—1

BC™ = Z( Pyt ( )Z( )B( i (n,m € Zy). “4)

k=0
To prove Theorem 4.2, we need the following.
Lemma 4.3. Form € Zsyand j € Z (0 < j < m), we have

m—1
m\(r m
=(j+1 . 5
Z,(r){J} v ){j+1} ©
Proof. Since {;} =0if r < j, we have
L0050
220
By Proposition 2.1 and (1), the left-hand side of (5) is equal to

505 ety

r=0

~ (—1)] B ]]. m—1 m )
- 350

1V < ;
S Z(—l)l(f)((l F -1
J: =0
1y (& j : j
_’ {Z(_l)Hl(l N l)lm + Z(_l)Hl(l)lm}
=1 =0
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( 1) & 1+1 . J m
T2 )+
_ DS 1+1(j+ 1) "
= — -1 /
Jj! ;( ) l

. m
=0+ 1){j+ 1},

which completes the proof of the lemma.

4.3 Proof of Theorem 4.2
First consider the case where m = 1. Then the right-hand side of (4) is equal to

2l 20

On the other hand, by Theorem 4.1, we have

1 1
B( 1 _ ]B( ”) 2n — 2”,
“of T

which proves (4) in this case.
Next suppose that m > 2. By Theorem 4.1, the right-hand side of (4) is equal to

S 5

k=0

m—1 n r
- Z<_1>m+r-1(’") (Z){(—l)’ Z(—l)fj!{’.}(j + 1)
= r k=0 Jj=0 J

_ ml m)\ o (n ; k
= (D) (r) (-1Yj {}Z(k)(1+1)

Jj= k=0
m—1 r
=ty (”:) (=1)/j {}<J+2>"
J=
m—1
= Aj,
j=0

where we put

m—1
Ap= Dy (’f)ﬂ{;}u +2

r=j

On the other hand, the left-hand side of (4) is equal to

m—1
By" = Z( " { .}<j+ =B,
j=0
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where we put
B'— —1j+m+1 '+1! .+2n.

By (5), wehave A; = B; (j = 0,...,m — 1), which implies (4) in the case where m > 2. Thus
the proof of Theorem 4.2 has been completed.

5. A formula of Brewbaker

5.1 Brewbaker’s theorem
Brewbaker showed the following remarkable result in [1].
Theorem 5.1. For m,n € Z(, we have

L(m,n) = BC™. (6)

In [1], Brewbaker gave three different proofs. We will give a new proof of Theorem 5.1
based on Theorems 3.4 and 4.2.

5.2 Proof of Theorem 5.1

We use the induction on m.

Since L(1,n) = 2" and B " = 27, (6) holds for m = 1. Suppose that (6) holds for m — 1. By
Theorem 3.4, we have

m—1 n
_ _1ym+r=1 m n
Lim,n) = ) (=1) (r) > (k)ur, ©.
r=0 k=0
By induction assumption and Theorem 4.2, we have

m—1 n
tinan =Sty 1
r=0 k

=0
=B{™.

Thus Theorem 5.1 has been established.
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