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Abstract

Yeshun Sun & Yongcheng Yin [3] and H. Ishida & T. Itoh [2] presented a precise descrip-
tion of the real cross section of the connectedness locus of the family of bi-quadratic polynomi-
als {(z*> +a)?+b}. In this note, we shall give a precise description of the real cross section of the
connectedness locus of the family of polynomials {(Pa+15 © Pans1.0)(@)} = (@ +a)***! + b},
where a, b are complex numbers and 7 is a positive integer. Our proof is an elementary one.
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1. Introduction and main results

Let {(Paus15 © Pons1.0)(@) = @' + @)®"*! + b} be the family of polynomials with complex
parameters a, b, where n is a fixed positive integer. The connectedness locus of the family
{P2n+1,6 © Pant1,4) 1s the set

Cor1c =1{(a,b) € C?|Julia set of Pou+1p © Popt14 1S connected. }
and the real cross section of Cy,+1 ¢ is the set
Conrie = ((a,b) € R?| (a,D) € Copar e}
We shall prove the following

Theorem 1. Cy,. g is the bounded closed region whose boundary is a simple closed curve
consisting of two smooth pieces

1 1
O ={a,b)eR?la=— """, b=t———— (- <1< -1},
1 =1{(a,b) la=— (Kt)2”+1( 2 212 -0)}

1
Q=KmMeRﬂa=7—#“%b=r— (t1 St n)),
K

(Kt)2n+l
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,k=\2n+ 1, and —a is a unique solution of the equation

where t| = th =
n

:E] W= (=1Y'Qn+1)

j==n

satisfying u < —1.

A

2. Preliminaries

Let p be a polynomial whose degree is more than one. We denote the k-times iteration of p
by pk. A critical point c of p is a zero of the derivative p’ of p, that is, p’(c) = 0, and a critical
value of p is the image p(c) of a critical point ¢ of p. For a critical point ¢ of p, { pk(c)},‘:":1 isa
critical orbit of p.

We use the following well known fact. (See [1].)

Proposition 2. The Julia set of p is connected if and only if all critical orbits of p are bounded.

Here we note that Py,415 © Pays14 has 2n + 2 critical points O, —al’/@D  Since (Pan+1p ©
PZnH,a)(—al/ Cr+ly = p, Ppi1 © Pani14 has only two critical orbits. Further, these critical
orbits of P15 © Pay41,4 are sequences of real numbers, if both a and b are real numbers.

3. Proof of Theorem 1.

For simplicity, we denote (Pa,4159Pan11.4)(2) = (7 +a)?"* 1 +b by P(z). Set F(z) = P(2)-z
then a fixed point of P is a solution of the equation F(z) = 0. Since

P/(Z) — (2}1 + 1)222n(z2n+l + a)Zn,
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we have
F(Q)=P@)-1=Qn+ 1’2" +a)* - 1
= h(z)(h(z) +2),
where
h(z) = 2n + D" +a)" - 1.

Hereafter, we assume that both a and b be real parameters. Let denote the real part of the
complex variable z by x.
P’(x) = 0 has two real solutions 0, — *"%/a. Let

¢; = min{0, — *~a)
C = maX{O, - 2”%}’

then c¢| < ¢, and the equality holds when a = 0.

Since the degree of F(x) is (2n + 1)?, F(x) = 0 has at least one real solution. Denote 7,
and r,,,, by the least and the greatest real solution of F(x) = 0, that is, the least and the greatest
real fixed point of P respectively.

We shall prove the following three lemmas.

Lemma 3. Both critical orbits {P*(c,)}; and {P*(c,)}; are bounded, that is,
(a,b) € Copr1r
if and only if F(x) = P(x) — x = 0 has at least two real solutions and

C1,C € [rmim rmax] = {x|rmin é X = rmax}-

Proof.

First, assume that F(x) = P(x) — x = 0 has only one real solution x = r. Then P'(r) 2 1.
Since P’(c;) = P'(cz) = 0, both ¢; and ¢, are not equal to r. Hence, either ¢; < rorc, > r.
Note that P(x) < x if x < rand P(x) > x if x > r. Then, if ¢; < r, limg_e P*(c;) = —co.

Similarly, if ¢; > 7, limg_,c PK(cp) = 0.

Thus, if both critical orbits {P*(c;)} and {P*(c,)} are bounded, then F(x) = P(x) —x = 0
must have at least two real solutions.

Moreover, P(x) < x when x < r,,;,, and P(x) > x when x > r,,,. Hence, if ¢; < r;,, then
limg_,e0 P¥(c)) = —co. Similarly, if ¢; > Fpgy, then limg_, e Pk(cy) = 0.

Henceforce, if both critical orbits {P*(c;)}; and {P*(c,)}x are bounded, then it holds that
€1, €2 € [Fimin, Fmax]-

Conversely, asuume that P(x) — x = 0 has at least two real solutions and ¢y, ¢ € [Fin, Fiax]-
Then, {P*(c))}, (P*(¢2)}k € [Fiin, Fmax], since P(x) is an increasing function. |

Lemma 4. There exists a unique real number a; < c; such that F'(ay) = 0, and there exists a
unique real number ay > ¢, such that F'(a;) = 0.
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Proof.
Since F’(x) = h(x) - (h(x) + 2), F""(x) = 21’ (x)(h(x) + 1), that is,

F'(x) = 2nQ2n + 12 (2 + @) (200 + D™ +a).

_ zu%

Set ¢* = ————,thenc; £ ¢* £ ¢y. Moreover, F’(x) < 0if x < ¢y and F”(x) > 0 if
B OES)) 1 2 (%) 1 (x)

x> ¢p. Since F’'(cy) = F’(cy) = —1, it is easy to verify that Lemma 4 holds. |

Lemma 5. F(x) = 0 has at least two real solutions and ci,¢3 € [Fuin, Ymax] if and only if
F(ay) 2 0and F(ay) £ 0.
Proof.

Note that F(x) is decreasing when ¢; < x < a», increasing when @, < x and lim,_,., F(x) =
co. Further, F(x) is increasing when x < «, decreasing when o < x < ¢ and lim,_,_, F(x) =
—o0. So, it is easy to verify that Lemma 5 holds. |

Proof of Theorem 1.
Recall that F’(x) = h(x) - (h(x) + 2), where

h(x) = 2n+ DX +a)" - 1.
Then
1 (x) =nC2n+ DX + @) Q0+ D +a)

Since h(c;) = h(cy) = —1, ay, a, are determined by the relations h(a;) = h(az) = 0 and
a; <cy L0 <ap.
Therefore, for any a, there is a unique ¢ < ¢; such that

() = Qn+ DEE +a)' -1 =0,

that is,

(" v a) = ! (D

2n+ 1

For the value ¢,
2n+1
F(t):(t2"+l+a)2”+'+b—t:(n—) +b—-120
tV2n + 1

if and only if F(a) = 0.
The relation (1) determines a smooth curve

1
a=——-"1 (1<0),

Kt
where k = V2n + 1. Hence, F(a;) = 0 if and only if
1
b=t

- ( Kt)z’”'l :
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From these two relations with respect to a and b, we determine the boundary curve £; of Cy41 .

Let
1 2i
=a-b=——-t-1"""4
é: Kt (Kt)2n+l

(t < 0), ()

_ z‘2n+1 _

1
n=a+tb=—+i t <0), 3)

(Kt)2n+l

then 7 is a singlevalued function n(¢) of ¢ (—oo < € < 00) and satisfies

1 1
f(K—t) = =&, U(K_t) = n(?).

Further,
1 2n
dn ~ _F + 1 -« + —K”+1t2n+2 B (KtZ)n -1 (t . 0)
e 1 L )+ ’
P R v
d2 —4 2n+1t4n+1
L K (t < 0).

d_é‘:Z = (Knth + I)S(Kn+lt2n+2 + 1)
Hence, n(¢) is convex and has a unique minimal value
2(-k"+1) 4n

VK n+ D 32n+l

at & = 0, which corresponds to r = —1/ k. Clearly, lim;_,.o 7 = +co. Hence, in £n-plane,

n = n(¢) transeverses n-axis twice. By relation (3) , we know that 7 = 0 has only two solutions
in t < 0, whose product is 1/«. Since < 0 when = —1, one of these solutions is less than —1
and another is between —1/k and 0.

The equation 7 = 0 of ¢ implies

K2n+lt4n+2 +1= KZ"(KIZ + 1)

Let x> = —u then we have

Dwl=(-1"@n+ 1) @)

j=—n
and this equation has a unique solution satisfying u < —1. Denote the solution by «, then —1/a
is another solution of (4). Therefore, Vka, Va/k are two solutions of n=0.

Similarly, by the condition F(a;) = 0, we have
a= 1 s (5> 0),
KS

and

b=y (s >0).

- (ks)2n1

Set t = —s, then we get

1
—a=— -1 1 <0),
Kt
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and
-b=1t- (Kt)m (r<0).
Hence, another boundary curve £, of C,41 r is symmetric to £; with respect to the origin in the
ab-plane. [ |
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