Real cross section of the connectedness locus of the family of polynomials $\left(z^{2 n+1}+a\right)^{2 n+1}+b$

Hisashi ISHIDA
Tsubasa KAMEI
Yoshinobu TAKAHASHI
$\binom{$ Received September 6, 2013, }{ Revised November 15, 2013}

Abstract

Yeshun Sun \& Yongcheng Yin [3] and H. Ishida \& T. Itoh [2] presented a precise description of the real cross section of the connectedness locus of the family of bi-quadratic polynomials $\left\{\left(z^{2}+a\right)^{2}+b\right\}$. In this note, we shall give a precise description of the real cross section of the connectedness locus of the family of polynomials $\left\{\left(P_{2 n+1, b} \circ P_{2 n+1, a}\right)(z)\right\}=\left\{\left(z^{2 n+1}+a\right)^{2 n+1}+b\right\}$, where a, b are complex numbers and n is a positive integer. Our proof is an elementary one.

Keywords: complex dynamics, real cross section, connectedness locus, polynomials, Julia set

1. Introduction and main results

Let $\left\{\left(P_{2 n+1, b} \circ P_{2 n+1, a}\right)(z)=\left(z^{2 n+1}+a\right)^{2 n+1}+b\right\}$ be the family of polynomials with complex parameters a, b, where n is a fixed positive integer. The connectedness locus of the family $\left\{P_{2 n+1, b} \circ P_{2 n+1, a}\right\}$ is the set

$$
C_{2 n+1, \mathrm{C}}=\left\{(a, b) \in \mathbb{C}^{2} \mid \text { Julia set of } P_{2 n+1, b} \circ P_{2 n+1, a} \text { is connected. }\right\}
$$

and the real cross section of $\mathcal{C}_{2 n+1, \mathrm{C}}$ is the set

$$
C_{2 n+1, \mathbb{R}}=\left\{(a, b) \in \mathbb{R}^{2} \mid(a, b) \in C_{2 n+1, \mathrm{C}}\right\} .
$$

We shall prove the following
Theorem 1. $C_{2 n+1, \mathbb{R}}$ is the bounded closed region whose boundary is a simple closed curve consisting of two smooth pieces

$$
\begin{aligned}
& \ell_{1}=\left\{(a, b) \in \mathbb{R}^{2} \left\lvert\, a=\frac{1}{\kappa t}-t^{2 n+1}\right., \quad b=t-\frac{1}{(\kappa t)^{2 n+1}}\left(-t_{2} \leqq t \leqq-t_{1}\right)\right\}, \\
& \ell_{2}=\left\{(a, b) \in \mathbb{R}^{2} \left\lvert\, a=\frac{1}{\kappa t}-t^{2 n+1}\right., \quad b=t-\frac{1}{(\kappa t)^{2 n+1}}\left(t_{1} \leqq t \leqq t_{2}\right)\right\},
\end{aligned}
$$

where $t_{1}=\frac{1}{\sqrt{\alpha \kappa}}, t_{2}=\frac{\sqrt{\alpha}}{\sqrt{\kappa}}, \kappa=\sqrt[n]{2 n+1}$, and $-\alpha$ is a unique solution of the equation

$$
\sum_{j=-n}^{n} u^{j}=(-1)^{n}(2 n+1)
$$

satisfying $u<-1$.

2. Preliminaries

Let p be a polynomial whose degree is more than one. We denote the k-times iteration of p by p^{k}. A critical point c of p is a zero of the derivative p^{\prime} of p, that is, $p^{\prime}(c)=0$, and a critical value of p is the image $p(c)$ of a critical point c of p. For a critical point c of $p,\left\{p^{k}(c)\right\}_{k=1}^{\infty}$ is a critical orbit of p.

We use the following well known fact. (See [1].)
Proposition 2. The Julia set of p is connected if and only if all critical orbits of p are bounded.
Here we note that $P_{2 n+1, b} \circ P_{2 n+1, a}$ has $2 n+2$ critical points $0,-a^{1 /(2 n+1)}$. Since $\left(P_{2 n+1, b} \circ\right.$ $\left.P_{2 n+1, a}\right)\left(-a^{1 /(2 n+1)}\right)=b, P_{2 n+1, b} \circ P_{2 n+1, a}$ has only two critical orbits. Further, these critical orbits of $P_{2 n+1, b} \circ P_{2 n+1, a}$ are sequences of real numbers, if both a and b are real numbers.

3. Proof of Theorem 1.

For simplicity, we denote $\left(P_{2 n+1, b} \circ P_{2 n+1, a}\right)(z)=\left(z^{2 n+1}+a\right)^{2 n+1}+b$ by $P(z)$. Set $F(z)=P(z)-z$ then a fixed point of P is a solution of the equation $F(z)=0$. Since

$$
P^{\prime}(z)=(2 n+1)^{2} z^{2 n}\left(z^{2 n+1}+a\right)^{2 n}
$$

we have

$$
\begin{aligned}
F^{\prime}(z) & =P^{\prime}(z)-1=(2 n+1)^{2} z^{2 n}\left(z^{2 n+1}+a\right)^{2 n}-1 \\
& =h(z)(h(z)+2),
\end{aligned}
$$

where

$$
h(z)=(2 n+1) z^{n}\left(z^{2 n+1}+a\right)^{n}-1
$$

Hereafter, we assume that both a and b be real parameters. Let denote the real part of the complex variable z by x.
$P^{\prime}(x)=0$ has two real solutions $0,-\sqrt[2 n+1]{a}$. Let

$$
\begin{aligned}
& c_{1}=\min \{0,-\sqrt[2 n+1]{a}\} \\
& c_{2}=\max \{0,-\sqrt[2 n+1]{a}\},
\end{aligned}
$$

then $c_{1} \leqq c_{2}$ and the equality holds when $a=0$.
Since the degree of $F(x)$ is $(2 n+1)^{2}, F(x)=0$ has at least one real solution. Denote $r_{\text {min }}$ and $r_{\text {max }}$ by the least and the greatest real solution of $F(x)=0$, that is, the least and the greatest real fixed point of P respectively.

We shall prove the following three lemmas.
Lemma 3. Both critical orbits $\left\{P^{k}\left(c_{1}\right)\right\}_{k}$ and $\left\{P^{k}\left(c_{2}\right)\right\}_{k}$ are bounded, that is,

$$
(a, b) \in C_{2 n+1, \mathbb{R}}
$$

if and only if $F(x)=P(x)-x=0$ has at least two real solutions and

$$
c_{1}, c_{2} \in\left[r_{\min }, r_{\max }\right]=\left\{x \mid r_{\min } \leqq x \leqq r_{\max }\right\} .
$$

Proof.
First, assume that $F(x)=P(x)-x=0$ has only one real solution $x=r$. Then $P^{\prime}(r) \geqq 1$. Since $P^{\prime}\left(c_{1}\right)=P^{\prime}\left(c_{2}\right)=0$, both c_{1} and c_{2} are not equal to r. Hence, either $c_{1}<r$ or $c_{2}>r$. Note that $P(x)<x$ if $x<r$ and $P(x)>x$ if $x>r$. Then, if $c_{1}<r, \lim _{k \rightarrow \infty} P^{k}\left(c_{1}\right)=-\infty$. Similarly, if $c_{2}>r, \lim _{k \rightarrow \infty} P^{k}\left(c_{2}\right)=\infty$.

Thus, if both critical orbits $\left\{P^{k}\left(c_{1}\right)\right\}$ and $\left\{P^{k}\left(c_{2}\right)\right\}$ are bounded, then $F(x)=P(x)-x=0$ must have at least two real solutions.

Moreover, $P(x)<x$ when $x<r_{\text {min }}$ and $P(x)>x$ when $x>r_{\text {max }}$. Hence, if $c_{1}<r_{\text {min }}$, then $\lim _{k \rightarrow \infty} P^{k}\left(c_{1}\right)=-\infty$. Similarly, if $c_{2}>r_{\text {max }}$, then $\lim _{k \rightarrow \infty} P^{k}\left(c_{2}\right)=\infty$.

Henceforce, if both critical orbits $\left\{P^{k}\left(c_{1}\right)\right\}_{k}$ and $\left\{P^{k}\left(c_{2}\right)\right\}_{k}$ are bounded, then it holds that $c_{1}, c_{2} \in\left[r_{\text {min }}, r_{\text {max }}\right]$.

Conversely, asuume that $P(x)-x=0$ has at least two real solutions and $c_{1}, c_{2} \in\left[r_{\min }, r_{\max }\right]$. Then, $\left\{P^{k}\left(c_{1}\right)\right\}_{k},\left\{P^{k}\left(c_{2}\right)\right\}_{k} \subset\left[r_{\text {min }}, r_{\text {max }}\right]$, since $P(x)$ is an increasing function.

Lemma 4. There exists a unique real number $\alpha_{1}<c_{1}$ such that $F^{\prime}\left(\alpha_{1}\right)=0$, and there exists a unique real number $\alpha_{2}>c_{2}$ such that $F^{\prime}\left(\alpha_{2}\right)=0$.

Proof.
Since $F^{\prime}(x)=h(x) \cdot(h(x)+2), F^{\prime \prime}(x)=2 h^{\prime}(x)(h(x)+1)$, that is,

$$
F^{\prime \prime}(x)=2 n(2 n+1)^{2} x^{2 n-1}\left(x^{2 n+1}+a\right)^{2 n-1}\left(2(n+1) x^{2 n+1}+a\right) .
$$

Set $c^{*}=\frac{-\sqrt[2 n+1]{a}}{\sqrt[2 n+1]{2(n+1)}}$, then $c_{1} \leqq c^{*} \leqq c_{2}$. Moreover, $F^{\prime \prime}(x)<0$ if $x<c_{1}$ and $F^{\prime \prime}(x)>0$ if $x>c_{2}$. Since $F^{\prime}\left(c_{1}\right)=F^{\prime}\left(c_{2}\right)=-1$, it is easy to verify that Lemma 4 holds.

Lemma 5. $F(x)=0$ has at least two real solutions and $c_{1}, c_{2} \in\left[r_{\min }, r_{\max }\right]$ if and only if $F\left(\alpha_{1}\right) \geqq 0$ and $F\left(\alpha_{2}\right) \leqq 0$.
Proof.
Note that $F(x)$ is decreasing when $c_{2}<x<\alpha_{2}$, increasing when $\alpha_{2}<x$ and $\lim _{x \rightarrow \infty} F(x)=$ ∞. Further, $F(x)$ is increasing when $x<\alpha_{1}$, decreasing when $\alpha_{1}<x<c_{1}$ and $\lim _{x \rightarrow-\infty} F(x)=$ $-\infty$. So, it is easy to verify that Lemma 5 holds.

Proof of Theorem 1.
Recall that $F^{\prime}(x)=h(x) \cdot(h(x)+2)$, where

$$
h(x)=(2 n+1) x^{n}\left(x^{2 n+1}+a\right)^{n}-1 .
$$

Then

$$
h^{\prime}(x)=n(2 n+1) x^{n-1}\left(x^{2 n+1}+a\right)^{n-1}\left(2(n+1) x^{2 n+1}+a\right)
$$

Since $h\left(c_{1}\right)=h\left(c_{2}\right)=-1, \alpha_{1}, \alpha_{2}$ are determined by the relations $h\left(\alpha_{1}\right)=h\left(\alpha_{2}\right)=0$ and $\alpha_{1}<c_{1} \leqq c_{2}<\alpha_{2}$.

Therefore, for any a, there is a unique $t<c_{1}$ such that

$$
h(t)=(2 n+1) t^{n}\left(t^{2 n+1}+a\right)^{n}-1=0,
$$

that is,

$$
\begin{equation*}
t\left(t^{2 n+1}+a\right)=\frac{1}{\sqrt[n]{2 n+1}} \tag{1}
\end{equation*}
$$

For the value t,

$$
F(t)=\left(t^{2 n+1}+a\right)^{2 n+1}+b-t=\left(\frac{1}{t \sqrt[n]{2 n+1}}\right)^{2 n+1}+b-t \geqq 0
$$

if and only if $F\left(\alpha_{1}\right) \geqq 0$.
The relation (1) determines a smooth curve

$$
a=\frac{1}{\kappa t}-t^{2 n+1} \quad(t<0),
$$

where $\kappa=\sqrt[n]{2 n+1}$. Hence, $F\left(\alpha_{1}\right)=0$ if and only if

$$
b=t-\frac{1}{(\kappa t)^{2 n+1}} .
$$

From these two relations with respect to a and b, we determine the boundary curve ℓ_{1} of $\mathcal{C}_{2 n+1, \mathbb{R}}$. Let

$$
\begin{align*}
& \xi=a-b=\frac{1}{\kappa t}-t-t^{2 n+1}+\frac{1}{(\kappa t)^{2 n+1}} \quad(t<0), \tag{2}\\
& \eta=a+b=\frac{1}{\kappa t}+t-t^{2 n+1}-\frac{1}{(\kappa t)^{2 n+1}} \quad(t<0), \tag{3}
\end{align*}
$$

then η is a singlevalued function $\eta(\xi)$ of $\xi(-\infty<\xi<\infty)$ and satisfies

$$
\xi\left(\frac{1}{\kappa t}\right)=-\xi(t), \quad \eta\left(\frac{1}{\kappa t}\right)=\eta(t) .
$$

Further,

$$
\begin{aligned}
& \frac{d \eta}{d \xi}=\frac{-\frac{1}{\kappa t^{2}}+1-\kappa^{n} t^{2 n}+\frac{1}{\kappa^{n+1} t^{2 n+2}}}{-\frac{1}{\kappa t^{2}}-1-\kappa^{n} t^{2 n}-\frac{1}{\kappa^{n+1} t^{2 n+2}}}=\frac{\left(\kappa t^{2}\right)^{n}-1}{\left(\kappa t^{2}\right)^{n}+1} \quad(t<0) \\
& \frac{d^{2} \eta}{d \xi^{2}}=\frac{-4 n \kappa^{2 n+1} t^{4 n+1}}{\left(\kappa^{n} t^{2 n}+1\right)^{3}\left(\kappa^{n+1} t^{2 n+2}+1\right)} \quad(t<0)
\end{aligned}
$$

Hence, $\eta(\xi)$ is convex and has a unique minimal value

$$
\frac{2\left(-\kappa^{n}+1\right)}{\kappa^{n} \sqrt{\kappa}}=-\frac{4 n}{(2 n+1) \sqrt[2 n]{2 n+1}}
$$

at $\xi=0$, which corresponds to $t=-1 / \sqrt{\kappa}$. Clearly, $\lim _{\xi \rightarrow \pm \infty} \eta=+\infty$. Hence, in $\xi \eta$-plane, $\eta=\eta(\xi)$ transeverses η-axis twice. By relation (3), we know that $\eta=0$ has only two solutions in $t<0$, whose product is $1 / \kappa$. Since $\eta<0$ when $t=-1$, one of these solutions is less than -1 and another is between $-1 / \kappa$ and 0 .

The equation $\eta=0$ of t implies

$$
\kappa^{2 n+1} t^{4 n+2}+1=\kappa^{2 n}\left(\kappa t^{2}+1\right)
$$

Let $\kappa t^{2}=-u$ then we have

$$
\begin{equation*}
\sum_{j=-n}^{n} u^{j}=(-1)^{n}(2 n+1) \tag{4}
\end{equation*}
$$

and this equation has a unique solution satisfying $u<-1$. Denote the solution by α, then $-1 / \alpha$ is another solution of (4). Therefore, $\sqrt{\kappa \alpha}, \sqrt{\alpha / \kappa}$ are two solutions of $\eta=0$.

Similarly, by the condition $F\left(\alpha_{2}\right)=0$, we have

$$
a=\frac{1}{\kappa s}-s^{2 n+1} \quad(s>0)
$$

and

$$
b=s-\frac{1}{(\kappa s)^{2 n+1}} \quad(s>0)
$$

Set $t=-s$, then we get

$$
-a=\frac{1}{\kappa t}-t^{2 n+1} \quad(t<0)
$$

and

$$
-b=t-\frac{1}{(\kappa t)^{2 n+1}} \quad(t<0)
$$

Hence, another boundary curve ℓ_{2} of $C_{2 n+1, \mathbb{R}}$ is symmetric to ℓ_{1} with respect to the origin in the $a b$-plane.

References

[1] Beardon, A.F., Iteration of Rational Functions, Springer-Verlag, 1991.
[2] Ishida, H. \& Itoh, T., Bifurcation curves of a family of one-dimensional biquadratic polynomial maps, depending on the complex variable, and two real parameters, International Journal of Bifurcation and Chaos, Vol. 20, No. 12 (2010), 4119-4126.
[3] Yeshun Sun \& Yongcheng Yin, The connectedness locus of a family of real biquadratic polynomials, International Journal of Bifurcation and Chaos, Vol. 17, No. 11 (2007), 4219-4222.

Department of Mathematics, Faculty of Science,
Kyoto Sangyo University,
Kamigamo, Kita-ku, Kyoto, Japan

多項式族 $\left(z^{2 n+1}+a\right)^{2 n+1}+b$ の連結性集合の実断面

石	田		久
亀	井		翼
高	橋	佳	伸

要 旨
関数族 $\left\{\left(z^{2 n+1}+a\right)^{2 n+1}+b\right\}$ の連結性集合の実断面を表わす式を決定した。
キーワード：複素力学系，実断面，連結性集合，多項式，Julia 集合

