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Abstract

Yeshun Sun & Yongcheng Yin [3] and H. Ishida & T. Itoh [2] presented a precise descrip-
tion of the real cross section of the connectedness locus of the family of bi-quadratic polynomi-
als {(z2+a)2+b}. In this note, we shall give a precise description of the real cross section of the
connectedness locus of the family of polynomials {(P2n+1,b ◦P2n+1,a)(z)} = {(z2n+1 + a)2n+1 + b},
where a, b are complex numbers and n is a positive integer. Our proof is an elementary one.
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1. Introduction and main results

Let {(P2n+1,b ◦ P2n+1,a)(z) = (z2n+1 + a)2n+1 + b} be the family of polynomials with complex
parameters a, b, where n is a fixed positive integer. The connectedness locus of the family
{P2n+1,b ◦ P2n+1,a} is the set

C2n+1,C = {(a, b) ∈ C2 | Julia set of P2n+1,b ◦ P2n+1,a is connected.}

and the real cross section of C2n+1,C is the set

C2n+1,R = {(a, b) ∈ R2 | (a, b) ∈ C2n+1,C}.

We shall prove the following

Theorem 1. C2n+1,R is the bounded closed region whose boundary is a simple closed curve
consisting of two smooth pieces

ℓ1 = {(a, b) ∈ R2 | a = 1
κt
− t2n+1, b = t − 1

(κt)2n+1 (−t2 ≦ t ≦ −t1)},

ℓ2 = {(a, b) ∈ R2 | a = 1
κt
− t2n+1, b = t − 1

(κt)2n+1 (t1 ≦ t ≦ t2)},
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where t1 =
1
√
ακ

, t2 =
√
α
√
κ

, κ = n√2n + 1 , and −α is a unique solution of the equation

n∑
j=−n

u j = (−1)n(2n + 1)

satisfying u < −1.

2. Preliminaries

Let p be a polynomial whose degree is more than one. We denote the k-times iteration of p
by pk. A critical point c of p is a zero of the derivative p′ of p, that is, p′(c) = 0, and a critical
value of p is the image p(c) of a critical point c of p. For a critical point c of p, {pk(c)}∞k=1 is a
critical orbit of p.

We use the following well known fact. (See [1].)

Proposition 2. The Julia set of p is connected if and only if all critical orbits of p are bounded.

Here we note that P2n+1,b ◦ P2n+1,a has 2n + 2 critical points 0,−a1/(2n+1). Since (P2n+1,b ◦
P2n+1,a)(−a1/(2n+1)) = b, P2n+1,b ◦ P2n+1,a has only two critical orbits. Further, these critical
orbits of P2n+1,b ◦ P2n+1,a are sequences of real numbers, if both a and b are real numbers.

3. Proof of Theorem 1.

For simplicity, we denote (P2n+1,b◦P2n+1,a)(z) = (z2n+1+a)2n+1+b by P(z). Set F(z) = P(z)−z
then a fixed point of P is a solution of the equation F(z) = 0. Since

P′(z) = (2n + 1)2z2n(z2n+1 + a)2n,
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we have

F′(z) = P′(z) − 1 = (2n + 1)2z2n(z2n+1 + a)2n − 1

= h(z)(h(z) + 2),

where

h(z) = (2n + 1)zn(z2n+1 + a)n − 1.

Hereafter, we assume that both a and b be real parameters. Let denote the real part of the
complex variable z by x.

P′(x) = 0 has two real solutions 0, − 2n+1
√

a. Let

c1 = min{0, − 2n+1√a}
c2 = max{0, − 2n+1√a},

then c1 ≦ c2 and the equality holds when a = 0.
Since the degree of F(x) is (2n + 1)2, F(x) = 0 has at least one real solution. Denote rmin

and rmax by the least and the greatest real solution of F(x) = 0, that is, the least and the greatest
real fixed point of P respectively.

We shall prove the following three lemmas.

Lemma 3. Both critical orbits {Pk(c1)}k and {Pk(c2)}k are bounded, that is,

(a, b) ∈ C2n+1,R

if and only if F(x) = P(x) − x = 0 has at least two real solutions and

c1, c2 ∈ [rmin, rmax] = {x | rmin ≦ x ≦ rmax}.

Proof.
First, assume that F(x) = P(x) − x = 0 has only one real solution x = r. Then P′(r) ≧ 1.

Since P′(c1) = P′(c2) = 0, both c1 and c2 are not equal to r. Hence, either c1 < r or c2 > r.
Note that P(x) < x if x < r and P(x) > x if x > r. Then, if c1 < r, limk→∞ Pk(c1) = −∞.
Similarly, if c2 > r, limk→∞ Pk(c2) = ∞.

Thus, if both critical orbits {Pk(c1)} and {Pk(c2)} are bounded, then F(x) = P(x) − x = 0
must have at least two real solutions.

Moreover, P(x) < x when x < rmin and P(x) > x when x > rmax. Hence, if c1 < rmin, then
limk→∞ Pk(c1) = −∞. Similarly, if c2 > rmax, then limk→∞ Pk(c2) = ∞.

Henceforce, if both critical orbits {Pk(c1)}k and {Pk(c2)}k are bounded, then it holds that
c1, c2 ∈ [rmin, rmax].

Conversely, asuume that P(x)− x = 0 has at least two real solutions and c1, c2 ∈ [rmin, rmax].
Then, {Pk(c1)}k, {Pk(c2)}k ⊂ [rmin, rmax], since P(x) is an increasing function.

Lemma 4. There exists a unique real number α1 < c1 such that F′(α1) = 0, and there exists a
unique real number α2 > c2 such that F′(α2) = 0.
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Proof.
Since F′(x) = h(x) · (h(x) + 2), F′′(x) = 2h′(x)(h(x) + 1), that is,

F′′(x) = 2n(2n + 1)2x2n−1(x2n+1 + a)2n−1
(
2(n + 1)x2n+1 + a

)
.

Set c∗ =
− 2n+1
√

a
2n+1√2(n + 1)

, then c1 ≦ c∗ ≦ c2. Moreover, F′′(x) < 0 if x < c1 and F′′(x) > 0 if

x > c2. Since F′(c1) = F′(c2) = −1, it is easy to verify that Lemma 4 holds.

Lemma 5. F(x) = 0 has at least two real solutions and c1, c2 ∈ [rmin, rmax] if and only if
F(α1) ≧ 0 and F(α2) ≦ 0.
Proof.

Note that F(x) is decreasing when c2 < x < α2, increasing when α2 < x and limx→∞ F(x) =
∞. Further, F(x) is increasing when x < α1, decreasing when α1 < x < c1 and limx→−∞ F(x) =
−∞. So, it is easy to verify that Lemma 5 holds.

Proof of Theorem 1.
Recall that F′(x) = h(x) · (h(x) + 2), where

h(x) = (2n + 1)xn(x2n+1 + a)n − 1.

Then

h′(x) = n(2n + 1)xn−1(x2n+1 + a)n−1(2(n + 1)x2n+1 + a)

Since h(c1) = h(c2) = −1, α1, α2 are determined by the relations h(α1) = h(α2) = 0 and
α1 < c1 ≦ c2 < α2.

Therefore, for any a, there is a unique t < c1 such that

h(t) = (2n + 1)tn(t2n+1 + a)n − 1 = 0,

that is,

t(t2n+1 + a) =
1

n√2n + 1
. (1)

For the value t,

F(t) = (t2n+1 + a)2n+1 + b − t =
(

1

t n√2n + 1

)2n+1

+ b − t ≧ 0

if and only if F(α1) ≧ 0.
The relation (1) determines a smooth curve

a =
1
κt
− t2n+1 (t < 0),

where κ = n√2n + 1. Hence, F(α1) = 0 if and only if

b = t − 1
(κt)2n+1 .



Real cross section of the connectedness locus of the family of polynomials (z2n+1 + a)2n+1 + b 5

From these two relations with respect to a and b, we determine the boundary curve ℓ1 of C2n+1,R.
Let

ξ = a − b =
1
κt
− t − t2n+1 +

1
(κt)2n+1 (t < 0), (2)

η = a + b =
1
κt
+ t − t2n+1 − 1

(κt)2n+1 (t < 0), (3)

then η is a singlevalued function η(ξ) of ξ (−∞ < ξ < ∞) and satisfies

ξ

(
1
κt

)
= −ξ(t), η

(
1
κt

)
= η(t).

Further,

dη
dξ
=

− 1
κt2 + 1 − κnt2n +

1
κn+1t2n+2

− 1
κt2 − 1 − κnt2n − 1

κn+1t2n+2

=
(κt2)n − 1
(κt2)n + 1

(t < 0),

d2η

dξ2
=

−4nκ2n+1t4n+1

(κnt2n + 1)3(κn+1t2n+2 + 1)
(t < 0).

Hence, η(ξ) is convex and has a unique minimal value

2(−κn + 1)
κn
√
κ
= − 4n

(2n + 1) 2n√2n + 1

at ξ = 0, which corresponds to t = −1/
√
κ. Clearly, limξ→±∞ η = +∞. Hence, in ξη-plane,

η = η(ξ) transeverses η-axis twice. By relation (3) , we know that η = 0 has only two solutions
in t < 0, whose product is 1/κ. Since η < 0 when t = −1, one of these solutions is less than −1
and another is between −1/κ and 0.

The equation η = 0 of t implies

κ2n+1t4n+2 + 1 = κ2n(κt2 + 1).

Let κt2 = −u then we have
n∑

j=−n

u j = (−1)n(2n + 1) (4)

and this equation has a unique solution satisfying u < −1. Denote the solution by α, then −1/α
is another solution of (4). Therefore,

√
κα,
√
α/κ are two solutions of η = 0.

Similarly, by the condition F(α2) = 0, we have

a =
1
κs
− s2n+1 (s > 0),

and

b = s − 1
(κs)2n+1 (s > 0).

Set t = −s, then we get

−a =
1
κt
− t2n+1 (t < 0),
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and

−b = t − 1
(κt)2n+1 (t < 0).

Hence, another boundary curve ℓ2 of C2n+1,R is symmetric to ℓ1 with respect to the origin in the
ab-plane.
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多項式族(z2n+1 + a)2n+1 + bの連結性集合の実断面

石　　田　　　　　久
亀　　井　　　　　翼
高　　橋　　佳　　伸

要　旨

関数族 {(z2n+1 + a)2n+1 + b}の連結性集合の実断面を表わす式を決定した．

キーワード：複素力学系,実断面,連結性集合,多項式, Julia集合


