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Abstract

Cawley and Mauldin analyzed multifractal structure of a probability measure (an invari-
ant measure) p induced on a Moran fractal. They introduced a system of weights as well
as the probability measure and gave an example in which the multifractal structure presents
spin-glass features and showed the gauge invariance.

In this paper, we consider the invariant set obtained by a random iteraition algorithm.
This random algorithm introduces the assoiated pobability and weight. The multifractal de-
compositions of the set with respect to the pair of probability density and weight density are
considered. To characterize the the Hausdorff dimension of the decomposed sets, we introduce
a pair of parameters (g, s). Using these parameters we represent the formula of the Hausdorff
dimension. This extension of introducing a pair of parameters gives us the freedom to in-
vestigate the spinglass phenomena of mutifractal structure. Furthermore we show the gauge
invariance holds.

Keywords: Random iteration algorithms, Multifractal decompositions, Probabilities and Weights,
Hausdorff dimensions, Spin-glass

1. Introduction

Cawley and Mauldin ([1]) presented a generalization of the multifractal decompositions for
Moran fractals with infinite product measure. The generalization is specified by a system of
nonnegative weights in the partition sum. They showed that the generalized spectrum f(a : w)
is not concave in general.

In Section 2, we review Cawley-Maudin’s results on multifractal decomposition of ran-
dom iteration measures with weight and the related spinglass phenomena. In Section 3, we
give some computer calculaton of the generalized spectrum of scaling indices which exhibit
multi-peak curves. In Section 4, we introduce a system of weights, and prove the multifractal
decomposition theory. In Section 5, we give a computer calculation of the region («,y) which
is attainable by some (g, 5). In Section 6, the gauge invariance of f(q, s) is investigated.

This work was supported by JSPS KAKENHI Grant Number 23540170.
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2. Multi-fractal decompositions of map specified fractals with weights
(Cawley-Mauldin)

Cawley-Mauldin’s formulation of multi-fractal decompositions of map specified fractals
with weights is as follows:

Let J be a non-empty compact set of m-dimensinal Euclidean space R™ such that the closure
of the interior of J is J. Assume that the diameter of J is 1, that is, |J| = 1. Let Ty,..., T,

be n contracting similarities with similarity ratios ry,...,r, (0 < r; < 1). We assume that
TihHcJ@=1,...,n)andthat T,(J)NT;(J) =¢ (@ * ).
The self-similar set K with respect to {7, ..., T,} is the non-empty compact set such that
K = UL, T(K).

Let S¥ = {1,...,n}*. Then K is also expressed by
K= ﬁzozo Ures, J(1).

where 7 = T(I)T(Z) e T(k) and J(T) = T-r(l) o TT(z) o... TT(k)(J).
The Hausdorff dimension of K is given by

dimy(K) = d

where d is the unique solution of

i=1
The coding space is Q = {1,...,n)N, where N = {1,2,3,....}. Foreach o € Q and k € N,
let ok = o(1) - - - o (k). The coding map g of Q onto K is defined by

g(@) =) (k).
k=1

The map g is a homeomorphism of € onto K.

Fix a probability vector (pi,...,p,); X, pi =1, pi >0 i =1,...,n, and let p be the
corresponding infinite product measure [],,(p1, ..., p,) on Q. Let p be the image measure on
K induced by g.

For each a (0 < @ < ), let

K,={oceQ: lim log p(aik)/ log r(crlk) = e}
and
Ka = g(ka)’

where p(alk) = 1%, poq and r(olk) = [T, roa)-
For each g € R, there is a unique number B(¢g) such that

n
i=1
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Let
d
a(q) = —@ﬂ(c]).

Assume that (py, pa,..., pp) # (4, r4, ..., ), then it holds that j—;z,b’(q) > 0.
Cawley-Mauldin showed that
for any a (1 < @ < ), there exists a unique ¢ such that

d
= —%ﬂ(Q)

where A = min{log p;/logr; :i=1,...,n} and A = max{log p;/logr; :i=1,...,n}.
Let

(@) = qa(9) + B(g),

and

f(@) = f(g(a)),
where g(a) is the unique g that is given by o = —diq,B(q).
Cawley-Mauldin proved the following theorem.
Theorem 1 (Cawley-Mauldin [1]). If (p1,p2,--->Pn) # (r‘f, r‘z’l, el rz),
dimy(Ko) = f(@),

foreach a (A < a < Q).
Furtheremore it holds that

logp(B(x.€) _
loge

)

x € K, ifandonly iflin&

where B(x, €) is the closed ball of radius € > 0 centred at x,that is, if g(o) = x,

1 k 1 B(x,
og p(alk) _ ifand only if lim ogp(B(x, €)) _ N
k—co log r(ok) €0 log e

()
In the case of that (p1, p2,..., pn) = ( I,rg,...,rff),
dimg(Ky) =d, K,=0 for a#d.
Cawley-Mauldin introduced a system of positive weights
w=Wi...,w,), w;>0 i=1,...,n.

For each g € R, there is a unique number (g : w) such that

n
i=1

11
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Let
K™ ={oceQ: lim log p(ol)/ log r(elk) = a(q : w)
and lim log w(ok)/ log (k) = ¥(q : w)}
where
atq: ) = -Lg ) = 200 Pt
i iz (log r,-)p?wirl{f(q-W)
and

Z?: (log Wi)P,?Wﬂ'f @
Z?:l (logr, ,»)p?w,»r’f @

y(g:w)=
and w(olk) = 15, woa)-
Put
K& = g(quW).

They investigated the Hausdorff dimension of K9".
Let

flg:w)=qalg:w)+y(q:w) +p(q:w).

Theorem 2 (Cawley-Mauldin [1]). For each q € R,

dimg(K?™") = f(q,w).
3. Some computer calculations of f(«@) curves with weights.

Assume that (py, pa,...,pa) # (i, rd, ..., r).
Cawley-Mauldin ([1]) showed that d“@(—gz’s) > 0. Owing to the monotone behaviours of

alg:w) = —dﬁ(qu’S), for a given a (1 < @ < 1) we have a unique g = g(a) such that
a(g(a) 1 w) = a.
Let

fla:w) = flg(a),w).

Cawley-Mauldin showed a computer calculation of the f(a : w) curve, and the model has
the property that the resulting multifractal curves f(a : w) are no longer necessarily concave
down. They state that the inclusion of an independent set of weights {w;} provides an additional
feature of a spin-glass phenomena.

We give some computer calculation of the graphs of f(a : w). The dashed curves have all
the weights equal to unity.
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Figure 1 is an example of Cawley-Mauldin in which n = 4 and f(a : w) curve has two
peaks. Ithast)y =th =t3=t4 = %, P11 = 0.21, P2 = 0.25, p3 = 0.25, Ps = 0.29, and w; = 0.495,
wy = 0.495, ws = 0.005, ws = 0.005.

Figure 2 is a case in which n = 3 and f(« : w) curve has two peaks. Ithast =1, =13 = %,
p1 =0.30, pr =0.32, p3 = 0.38, and w; = 0.453, w, = 0.545, w3 = 0.002.

Figure 3 is a case in which n = 4 and f(a : w) curve has three peaks. Ithast; =, = 3 =
ty = % p1 =023, pp =0.27, p3 = 0.20, p4 = 0.30, and w; = 0.495, w, = 0.495, w3 = 0.005,
wy = 0.005.

Figure 4 is a case in which n = 5 and f(a : w) curve has four peaks. It has#; = 1, =
=1t =15 = }1, p1 = 0.20, p, = 0.25, p3 = 0.15, ps = 0.18, ps = 0.22 and w; = 0.1433,
wy = 0.00000001, w3 = 0.00001999, wy = 0.856, ws = 0.00068.

We have examples such that a graph of f(a : w) has n — 1 peaks where #n is the number of
the contraction.

4. Generalization of Cawley-Mauldin’s formulation

In this section we generalize Cawley-Mauldin’s formulation introducing another parameter
s corresponding to {w;} so as the parameter g corresponds to {p;}.
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As before fix a probability vector (pi,...,p,) ; X pi =1, pi>0 i=1,...,n, and let

0 be the corresponding infinite product measure [1;2,(pi,. .., p,) on Q. Let p be the image
measure of p on K induced by g.

Now fix a weight vector (wy,...,wy); X, w; = 1L, w; >0 i =1,...,n, and let Y be the
corresponding infinite product measure [];2, (w1, ..., w,) on Q. Let o be the image measure on

K of ¢ induced by g. Note that Cawley and Mauldin do not assume },7_, w; = 1.
For each (g, s) € R?, there is a unique number (g, s) such that

n
3o <1
i=1

Note that
B(q.0) =pB(g) and B(g,1) =pB(q :w),
because
Zn:pfrf(q) =1 and Zn:p?wirf(q:w) =1.
i=1 i=1
Put
alg, ) = —3—[;(% s) and  y(g,s) = —g—[j(q, 5)-
Let
K@) =(ceQ: kh_,r?o log p(clk)/ log r(clk) = a(q, 5)
and kILH; log w(olk)/ log r(olk) = y(q, )}
and let
K@ = a( f((q,S))'
Put

f(g.9) = qa(q, $) + sy(q, $) + B(q, $).

Theorem 3. Let (,y) be given and suppose that there exists a pair of reals (q, s) = (q(a,7y),
s(a, y)) such that

a=ualg,s) and vy =1vy(q,s).

Let

1 B 1 B
K(M):{xej(:limwza and hmwz
. =0 loge €0 log €

v}

Then it holds that

Ky = K.
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Moreover it follows that

dimH K(a,y) = f(cx, ’)/),

where

fla,y) = f(g(@,y), s(a,y)) with a=alg,s) and y=y(g,s).

Remark. The uniqueness of a pair of reals (g, s) which attains the given (e, y) fails in general,
but the value of f(a,7) is independent of choice of (g, s) and this fact holds from the proof of
this theorem.

For the proof of this theorem we adopt the proof of Theorem 11.5 in Falconer ([2]).
First we state Proposition 2.3 in [2] for the proof of Theorem 3.

Proposition 4.1 (Falconer, Fractal Geometry [2], Proposition 2.3).
Let E be a Borel set.
dimy(E) = f

if there exists a finte measure v such that v(E) > 0 and for all x € E,

log v(B(x, 1))
m —_—
r—0 log r

= f,
where B(x, r) is the closed ball of with centre x and radius r > 0.

For given (g, s) € R? and B(q, s), we define a probability measure v* on K as follows: Let
k
.5 _ q .5 (g, 5)
V(D) = H p‘r(i)w‘r(i)'f(i)
i=1

where J(7) = Trq) - Tr2) - - Try(J) for Tt € S k and extend to a measure on K.

Lemma 4.1. Let (a,7) be given and suppose that there exists a pair of reals (q, s)
= (q(a, ), s(a,y)) such that

a=alg,s) and vy =1vy(q,Ss).

Then it follows that
(@) v?*(K(a,)) = 1 where a = a(q, s) and y = y(q, s),
(b) For all x € K(y,),

log v¥*(B(x,r)) &

lim f(q, ).

r—0 lo gr

The proof is a modification of the proof of Proposition 11.4 in Falconer ([2]). So it is proved
in Appendix.

Proof of Theorem 3
The fact that K, ,) = K% is proved as the proof of the statement () of Theorem 1.
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By Lemma 4.1, we have a measure v¥* which satisfies the condition of Proposition 4.1, so

the conclusion follows.
5. Attainable region of (a,y)
It is known that the « takes values in

log p; log p;
min —£21 max 8P
1sin logr;~ 1<izn logr;

and y takes values in

logw; logw;

min , max .
I<isn logr;  1<isn logr;

See [1].
How about the pair (a,y)?

We do not have the charaterization of the region of the pair («,y) which is attainable by
some pair (g, §), that is @ = a(q, s) and y = y(q, s).

We give an example of the trajectories of (a(q, s), y(g, 5)) for fixed s’s and =100 < g < 100,
and for fixed ¢’s and —100 < s < 100.

Our ratios, probabilities and weights are given by

n=38, 1={1/4,1/4,1/4,1/4,1/4,1/4,1/4,1/4},
p =10.11,0.09, .075,0.075,0.155,0.145,0.175,0.175}
and w={0.11,0.11,0.125,0.115,0.14,0.14,0.135,0.125}.
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6. Gauge invariance

Cawley and Mauldin ([1]) noted the gauge invarinace of f(a : w). They introduce a trans-
formation of the weights;

T(a,b): w; = W; = wip?rl’-’, i=1,....,n; abeR.
Recall that
flg:w)y=qalg:w) +y(qg:w)+Bg:w).
Fora (1 <a < ), let
fla:w) = flgla:w):w)

where g = g(a : w) satisfies —diq,B(q w) =a.
Let

fla:w) = flgla:Ww): W),

where g = g(a : W) satisfies —diq,B(q W) = a.
They showed that

fla:w) = fla:w),

and call it gauge invariant property.

In their formulation, they do not assume the condition )7, w; = 1.

We show the gauge invariance in our formulation. In our setting we assume that 3", w; = 1,
w; >0 (i =1,...,n), and so the transformation 7'(a, b) satisfies that ), w; = >\, w,-p;’rib =1
and so

b=pa,l).
We consider a transformation of the weights;
T(a):wi = w; = wipi“rf(“’l), i=1,....n; a€eR.
Recall that
£(q.5) = qa(q. 5) + sy(q. 5) + B(g. 9).

Under these weights {w;, i = 1,...,n}, the corresponding SB(q, s : W), a(q, s : W), y(g, s : w) and
f(q, s : w) are related to 8(q, s : w), a(q, s : w), y(q, s : w) and f(q, s : w) as follows:

Bg,s:w) =p(g+as,s:w)—pa,1)s

a(g,s:w)=alqg+as,s:w)

y(q,s:w)=alqg+as,s:wya+vy(g+as,s:w)+pBa,l).
It holds that

a(g—as,s:w)=alg,s:w).
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‘We have that
flg—as,s:w) = fg,s:w),

because f(q—as, s:w)=alg—as,s:w)(qg—as)+y(g—as,s: w)s+pB(g—as,s:w)=alq,s:
w)(q—as)+ (a(q, s :Aw)a +7y(q,s:w)+p(a,1)s+B(q,s:w)—pBa,1)s=alg,s:wqg+y(g,s:
w)s + B(q, s : w) = f(q,s: w).

Fora (1 < a < ), let

fla,s:w) = fgla,s:w),s:w)
where ¢ = g(a, s : w) satisfies —H%,B(q, s:w) = a,and let
fla,s:w) = f(q(a, SIW), S W),

where g = g(a, s : W) satisfies —(f—q,B(q, s : w) = a. Note that g(a, s : w) = g(a, s : w) — as.
Then we have the following gauge invariance;

fla,s:w) = fla,s:w),
because f(a,s : w) = f(q(a',s TW),Ss W) = f(q(a,s Tw)—as,s:w)= f(q(a/,s W), s w) =
fla,s:w).
Appendix

For the proof of Lemma 4.1, we state another lemma.
Let

O(g, 5.0 = Y plwir!
i=1
for real numbers ¢, s and 8. By the definition of B(g, s), we have ®(g, s,8(q, s)) = 1.
Lemma A.1. Let € > 0. It holds that for @ = _g_g(q, 5),
D(g+6,5,8(q,5)+ (—a+€)) <1,
D(g -0, 5,6(q,5) + (@+€)d) <1,
and fory = —Z—f(q, s),
D(g, s +0,8(q, s) + (—y+€)d) <1,
O(q,5 = 6,8(q,5) + (y + €)6) < 1
for a small 6 > 0.

Proof of Lemma A.1

It holds that ®(q + 4, 5, 8(q + 0, s)) = 1. Note that 8(g + 6, s) < B(g, 5) + (—a + €) ¢ if (> 0)
is small, because @ = —g—i(q, s). @ is decreasing in its third argument, so we have

®(q +6,5,8(q,s)+ (—a+e)d) < 1.
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Other inequalities are proved similarly.

Proof of Lemma 4.1

(a)
For x € K, we write J%(x) for the set J(7) (r € §¥) which contains x.
Let O < € < . Then for § > 0, we have

vi(x € K p(Jix) 2 V@I = v (r e K 1 1 < p(J @) Il )
< f PO I IR dv (x)
= D U@V @I ()

Tesk
k
= 2 ] e o) o) e e P
TeSk i=1

k

n
= (Z(Pr(i))qﬂs(wr(i))S(rr(l.))ﬁ(q,s)+(e—a)5)

i=1
= (D(q + 6, 5,8(g, 5) + (€ — a)5))".
By Lemma A.1, it holds that
Vi (x € K @ p(J(x)) = [T 01776 < o,

where 0 < 17 < 1, so we have

v3(x € K = p(J*(x)) > |J5(x)|“ ¢ forsome k > ko) < Z 7t < co.
ko

It follows that for v¥* — a.e. x,

k
liminfM > — €.
ko logJK ()|

Since € > 0 is arbitrary, for v¥* — a.e. x,

k
lim inf M >
o Tog lA(Y)

Similarily we obtain that
log p(J*
ko log [JK(x)|
by using

O(g—06,5,8(q,s)+(@+e€) o) <1

in Lemma A.1.
It means that for v?* —a.e. x € K,

1 k
o logp(H() _
e Log |70

19
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Furthermore we obtain for v¥* — a.e. x € K,

logo(*(x)) _
i logl A
by Lemma A.1.
By the same argument as the statement (x) of Theorem 1, we have
k k
o logpBer) _ | logp(i) L loge(BLur) _ | logo( (x)
r—0 log r k—co log |J*(x)] =0 log r k—co log |J¥(x)]

and so
Vq's(K((,’y)) =1.
(b)
Note that

log () _ logpt' () | logoU"e) o
logl k@ T loglFF)  loglk@) T

For all x € K(o,),

log |7*(x)|
log |7¢(x)|

log Vi (JX(x))
— + sy +
g Fe] 1T
as k — oo.

By the same argument as the statement (x) of Theorem 1, we have

. log v (B(x, ) _ . log v (J5(x))
lim = lim
r—0 logr k—co  log |J*(x)|

So it holds that,
log v¥*(B(x, r))
m—

= qa + sy +8 = f(g,s).
r—0 logr
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