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Abstract

A random iteration algorithm for mutual-recursive sets (graph-directed sets) is consid-
ered. We deal with a pair of a probability and a weight on the mutual-recursive sets. The
multifractal decompositions with respect to the pair of probability density and weight density
are investigated. Therefore, we introduce a pair of parameters (g, s). Using these parameters,
the Hausdorff dimension and the Packing dimension of the set in the mutual-recursive set, of
which the densities of probability and weight are specified, are charactrized. This extension of
introducing a pair of parameters gives us the freedom to invetigate the spinglass phenomena
of multifractal structure as indicated in [4]. This work is an extension of [1], [3] and [4].

Keywords: Random iteration algorithms, Mutual-recursive sets, Multifractal decompositions,
Hausdorff dimensions, Probabilities and Weights

1. The setting

We follow the formulation of Edgar-Mauldin ([1]).

Let (V, E) be a directed multigraph; a v € V is a vertex of the graph; an element e € E
is an edge of the graph. For u,v € V, a subset E,, is the set of the edges from u to v and let
E, :=U,vE,.

A path in the graph is a finite string y = eje; - - - €, of edges such that the terminal vertex of
each edge e; is the initial vertex of the next edge e;41.

Ef,’? :={y =ejey--- ¢ : apath that begins at u and ends at v}

E; = Uy Ew)

EY = URoEY

EW = Usev E;*)‘

A path that begins and ends at the same vertex is called a cycle. A cycle with no repeated
vertex is a simple cycle.

We assume that the graph (V, E) is strongly conneted, that is, there exists a path from any
vertex to any other vertex. Furthermore we assume that there are at least two edges leaving
each vertex, that is, #E,, =2 2 for any u € V. This assumption assures later that 0 < p(e) < 1.
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Let J, (u € V) be non-empty compact subsets of R” such that the closure of the interior of
J, is J,, and the diameter of J,, is 1 for any u € V for convenience.

A similarity 6, is specified for each e € E with ratio r(e) with 0 < r(e) < 1.

Assume that 6,(J,) Cc J, ife € E,,, and 6,(J,) N 6;(J;) = O forany e € E,,,, & € E,;(e # &)
forany u,vand ¥in V.

Ify=e e € EX isapath, let J(y) = 0,,0,, ...00,(J,) C Jy and r(y) = r(ey) - - - r(ep).

Mutual-recursive sets (or, graph-directed sets) are

Ku=ﬁ L o, uev.

k=0 e g®
Let A(s) be a square matrix such that the entry in row u and column v is
An(s) = D r(e)"
eeE,,

The Hausdorff dimension of all the sets K, is the unique non-negative number of d such
that the matrix A(d) has spectral radius 1.

The models

Write E for the set of all infinite strings with alphabet £ where the initial vertex of the
first edge is u and the terminal vertex of each edge is the initial vertex of the next edge. For
each y € E™, the cylinder [y] is the set of all infinite strings o € E,(f’) that begin with 7.

There is a model map 4, : Ef,“’) — R” defined so that

hu(e) = () J(alh),

k=1

where ok =¢;...eyforoc=e¢;...¢;... and e € E,,.

Probability and weight
In this paper we consider probability p(e) and weight w(e) such that
ZZ[J(@):I, ZZw(e)zl.
veV ecE,, veV ecE,,

Note that 0 < p(e) < 1, 0 < w(e) < 1, because #E,, > 2.
We define probabilities and weights of paths; If y = eje; .. . e, then
p(y) = pler)---pler), w(y)=wler)---wlew).

There is a unique measure p, on E,(;”) with p,([y]) = p(y) forall y € Ef,*).
A measure p, on K, (u € V) is defined by

pu(F) = pu(h, (F))

for a measurable set F C R”.
Similarly we define a weight 9, on E*’ and o, on K, (1 € V); &, on E with 9, ([y]) = w(y)
forall y € Eft*), and o, (F) = @u(h;' (F)) for a measurable set F C R”".
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Hausdorff dimension
Let F C R" be a set. For fixed positive numbers s and 9, let

HS(F) = inf Z(diam A,
where the infimum is over all countable families {A;}2, of sets with U;A; 2 F and diam A; < ¢
for all i. Define the s—dimensional outer Hausdorff measure of F by
H'(F) = lim Hy(F) = sup Hy(F).
610 6>0
There is a unique value d, such that

oo if s<d

0 if s>d

H(F) =
This critical value d is the Hausdorff dimension of the set F'. We write d = dimy F.

Packing dimension
Let F C R" be a set.
For fixed positive numbers s and ¢, let

PU(F) = sup ) (26",

where the supremum is over all countable disjoint families {B (x;)};2, of balls with < € and
x; € F where B.(x) = {y € R" : |y — x| < €}. Define the s—dimensional packing pre-measure of
F by

P’(F) = lim P.(F) = inf P)(F).
€l0 e>0
Define the s-dimensional packing measure of F' by
P'(F) = inf Z PU(F)),
where the infimum is over all countable families {F;}?, of sets with U;F; 2 F.
There is a unique value d, such that

oo if s<d
P(F) =
0 if s>d

This critical value d us the packing dimension of the set F. We write d = dimp F'.
Multifractal decomposition

We consider multifractal decomposition of the pair (o, 0,) of the measure and the weight
on K, whereu € V
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Given two reals @, and «,,, we set
(o .o k
Kf,a”’ ) = {oe E,(;“) : lim 28 PT) plk) =
k—oo log r(olk)

I’\(L(l*,aw) — {0. c E'(lw) - lim 10g W(O_lk) _
k—oo log r(olk)

75 p, . 1 k
K; p@w) _ (o€ Ef,w) - lim og p(alk) = a,
k—oo log r(olk)

ph

w } B

logw(alk)

d =
ane L8 Tog (olk)

a,,}.
Let
K™ = (R,
KE*,Q“,) — hu(l’(‘vl(l*,aw))’
Kliap’aw) = h( kl(la,,,aw)).
{K,ia”’*)}ap, (K™Y, | and {Kf,a”’a“')}(%aw) are called the multi-fractal decomposition with
respect to p, o, and (p, o) respectively.

The assumption that 6,(J,) () 6:(J;) = 0 for any e,é € E, with the exception of the case
when e = ¢ implies that

(ap.%) . log pu(B(x))
K,” = K, :lim =02 = ),
o e ke i o Bl !
1 B,
K,S*"’w)z{xel(u:lim—ogg"( W) _ 0,
0 log|B,(x)|
log p,(B,(x)) _ log 0,(B/(x)) _

Kb(t(tp,aw) ={xeK,:lim

= d 1
0 loglBv P T

M Tlog Bl

where B.(x) is the closed ball of radius € centred at x and so |B.(x)] = 2¢. These facts are
proved in Edgar-Mauldin [1] (p.610).

The Hausdorff dimensions and the Packing dimensions of the multifractal components
K g and K7 are computed as follows.

Let A(q, s,8) be a square V x V matrix. The entry is

Anlg: 5B = ), pewe)’ref (wveV).
eckE,,

For given (g, s), there is a unique S such that A(qg, s, ) has spectral 1. This g is an analytic
function (g, s) of ¢ and s.

Define

B o g
oqg & MY

ap(q,s) =
and

f(q.s) = a,(q, g + a,(q, )s + (g, 5).
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Theorem 1 (Extension of Theorem 1.6 of Edgar and Mauldin [1]).

Let (V,E) be a strongly connected directed multigraph. Let r(e) with 0 < r(e) < 1 be a
system of ratios for the graph, and let p(e) and w(e), with 0 < p(e) < 1 and 0 < w(e) < 1,
be two systems of transition probabilities for the graph. They define p, and 0, on the models
Eff” ) where u € V. Let q, s, B, ap, a,, be numbers above. Then for each u € V, the Hausdorff
dimension and the packing dimension of multifractal components K,ﬁ‘y”’*), Kft*’“w), and Kb(,a”’a“’)
are given by

dimp K7 = dimp K = £(¢,0)
where ), = —aﬁé—‘fi’o)for some ¢,
dimy K™ = dimp K™ = £(0, 5)
where a,, = —% for some s,
dimy K\ = dimp K™ = f(q, )

and a,, = —% for some q and s.

_ _ 989
where ), = 9

The Hausdorff dimensions and the packing dimensions do not depend on the choice of a

pair of q and s.

This theorem is proved in Section 3.
2. Auxiliary functions

Recall that A(g, s, ) is the matrix with the entry

Anl@, 5.8 = ) pleYwe)ref (wveV).

e€E,,

Let ®(q, s,8) be the spectral radius of A,,(g, s, 3).

Proposition 2.1 (Extension of Proposition 3.1 of Edgar and Mauldin [1]).

(1) @(q, 5,8) : RX R X R — (0, ) is continuous.

(i) ©(q, s, B) is strictly decreasing in each variable seperately.

(iii) For fixed g,s we have limg_,., (g, 5,8) = 0 and limg_,_., D(q, 5,8) = oo. For fixed B
and s we have limy_,., ®(q, 5,5) = 0 and lim,_,_., O(q, s, 8) = oo. For fixed  and g we have
lim,_,o, ®(q, s,B) = 0 and lim,_,_, (g, s5,B) = oo.

@iv) D(q, s,p) is log-convex; if q1, g2, 51, 52, B1, B2 € R, a1, ax 20, a; + a, = 1, then

D(a1q1 + arqr, ais1 + azsy, a1y + axf32) < (g1, 51,81 D(q2, 52,52).

Proof. See the proof of Proposition 3.1 of Edgar and Mauldin [1].

Proposition 2.2 (Extension of Proposition 3.2 of Edgar and Mauldin [1]).
Let B = B(q, s) be defined by ©(q, s,B) = 1. Then
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(1) B(q, s) is an analytic function of the variable g, and an analytic function of the variable

(ii) B(g, s) is strictly decreasing ; if q1 < q», then B(q1, s) > B(q2, s), and if s1 < s3, then

B(g, s1) > B(gq, 52).

(iii) limy—, o B(q, 5) = 0o and lim,_,., B(q, §) = —o0. lim,_,_ B(q, §) = oo and lim,_,., B(q, 5) =
—00

(iv) B(gq, s) is a convex funtion with respect to two variables q,s; if ay, a; > 0, a; +a; = 1,
then

Blaiqr + axqo, a151 + axsz) < a1f(qi, s1) + axB(qa, 52).

Proof. See the proof of Proposition 3.2 of Edgar and Mauldin [1].
Recall that p(e) and w(e) satisty

DX =1 and Y 3w =1,
veV ecE,, veV ecE,,

forallu e V.

By the Perron-Frobenius theorem, the spectral radius of A(1,0,0) is 1 and so 8(1,0) = 0.
And the spectral radius of A(0, 1,0) is 1 and so (0, 1) = 0.

Let {£,(g, 5)}yev be the unique positive eigen vector of A(g, s, 8(q, s)) such that

DD PO e V6 (g, 5) = £ulg5) forall weV, and ) £(q.s)= 1.
veV ecE,, veV

The entries {£,(q, 5)},ey are analytic functions of ¢ and s.
Let {1,(q, s)}.cv be the unique positive left eigen vector for which

Z Z (g, s)p(e)iw(e)’ r(e)’4 = A,(¢q,s) forall veV,
ueV eckE,,
and
> ua HAlg.5) = 1.
ueV

The entries {1,(q, s)},ev are analytic functions of g and s.
Let ¢, = &,(q, 5), 4, = A.(q, 5). Following the argument in Edgar and Mauldin [1], we have

a_ﬁ __ 2u 2w ZeeEm,(/lup(e)qw(e)sr(e)ﬁ(q's)fv) log p(e) <0
0q Y D Zeek,, (Aup(e)iw(e) r(e)49¢,) log r(e)

Leta, = —%ﬁ, then @, > 0 and

_ L Deek (Aup(e)?w(e)’r(e)“¢,) log ple)
Y By Teer,, (Aup(e)iw(e) r(e)f49¢,) log r(e)

ap

Similarly we have

OB __ Zu B Teer, up(@wle) r(ef 46, ) log w(e) _
05 T Lo Tecr, (ap(@I(e) H(eP4IE,) log r(e)
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Leta,, = —g—lj, then a,, > 0 and

D B Deer, (Aup(e)w(e)’ r(e)#¢,) log w(e)

w

Ify=eer...ep € E®,

T Y2 Yeer, (Auple)iw(e)sr(e)@é,) log r(e)

no(y) = pO) _ plevp(er)...pler)
r(y) r(epr(ez)...r(ex)

o(y) = w(y) _ w(el)w(eg)...w(ek)‘
r(y)  r(er(ez)...r(ex)

29

Let

7™ = min{n,(y) : y
7 = max(,(y) : y
it = min{n,(y) 1 y

My
= max{n,(y) : v

is a simlpe cycle},
is a simlpe cycle},
is a simlpe cycle},

max

e is a simlpe cycle}.

2 2
By Proposition 2.2, 8(q, s) is a convex function of ¢ and s, so %j > 0 and gT/;

oa, o,
thatw SOandW <0.

> (. This means

Proposition 2.3 (Extension of Proposition 3.3 of Edgar and Mauldin [1]).
Let (x,),ey be the Perron numbers; i.e., x, > 0 and

Z Z r(e)dxf = xﬁ

veV ecE,,

forallueV.

(A) Suppose that p(e) = w(e) = (x;'r(e)x,)?, for allu,v € V and e € E,,,. Then

1) B(g,s) =d —dg —ds.

(i1) (g, s) = d and a,,(q, s) = d.

(i) f(g,s) = d.

(iv) K99 = K, and K7™ = 0 for all (@, ) # (d, d).

(B) Suppose that p(e) = (x;lr(e)xv)d forallu,v e Vande € E,,, and w(e) # (x;lr(e)xv)d for
at least one edge e. Then

(1) B(g, s) = —dq + ¢,,(s) where ¢,,(s) is a function of s defined by ©(0, s, $,,(s)) = 1. ¢,,(s)
is a strictly convex function of s.

(i1) ap(q, s) = d is constant. a,(q, s)(= —%(bw(s)) does not depend on g and is a strictly
decreasing funtion of s. So if we fix ¢ we may consider s as a function of «,, defined on an
interval (™", pmev),

(iii) f(q, s) = sa(s) + ¢,,(s) does not depend on q and is a strictly concave function of .

(iv) K™ = K@ % 0 if and only if p"™" < a, < ",

(B’) Suppose that w(e) = (x;lr(e)xv)d, and forallu,v € Vand e € E,,, and p(e) # (x;lr(e)xv)d
for at least one edge e. Then

() B(g, s) = —ds + ¢,(q) where ¢,(q) is a function of q defined by ©(q,0,¢,(q)) = 1. ¢,(q)
is a strictly convex function of q.
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(i) @, = d is constant. a; does not depend on q and is a strictly convex funtion of q. So we
may consider q as a function of a, defined on an interval (77’;”", 7).

(iii) f(q, $) = g ap + ¢, (s), s0 f(q, 5) does not depend on q and is a strictly concave function
of a,,.

() K" # 0 if and only if ™ < @, <10 K7™ # 0 if i < @, < 1.
(C) Suppose that p(e) # (x;'r(e)x,)? for at least one edge e and w(e) # (x;'r(e)x,)? for at least
one edge e.

(1) For a fixed s, 5(q, $) is a strictly convex function of q, and for a fixed q, 5(q, s) is a strictly
convex function of s.

(ii) For a fixed s, ap(q, s) is a strictly decreasing funtion of g, and for a fixed g, a,,(q, 5) is a
strictly decreasing funtion of s.

(iii) K = 0 if ap <™ or a, > e, K5 = 0 if oy, < 77 or @y, > 7

min max

(@p.aw) _ @ - min max
And so K, =0ifa, <ny" oray > )™ or a,, <m" or ay, > .

The proof is in Appendix.
3. Proof of the dimension theorem

We follow the proof of Falconer([2] p.192).
First we state Proposition 2.3 in [2] for the proof of Theorem 1.

Proposition 3.1 (Falconer, “Fractal Geometry” [2], Proposition 2.3).
Let E be a Borel set.

dimy(E) = dimp(E) = f

if there exists a finite measure v such that v(E) > 0 and for all x € E,

i 108 V(B,()
—0  logr

= f,
where B,(x) is the closed ball of with centre x and radius r > 0.

Let

Wu(g: 5.8 = Ea. 7 Y D pleywle) ey é(g. ),

veV e€E,,

where {£,(g, $)}yev 1s defined in Section 2, that is,

D17 peyiw(ey ref e g, 5) = g, 5) forall ueV.

veV ecE,,

Note that

\PM(Qs S,ﬁ(q, S)) =1.

Then the following lemma holds.
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Lemma 3.1 (Extension of Lemma 11.3 of Falconer [2]).
Forall € > 0,

lPu(q + 6’ S,,B(f], S) + (_ap(q’ S) + 6)6) < 1’
Y.(q—0,5,B(q,s) + (ay(g,s) +€)d) <1,
Wu(g, s +6,B(q, 8) + (—aw(g, ) + €)0) < 1

and

Yu(g. s = 6.8(q. s) + (aw(q, 5) + €)0) < 1
for all sufficiently small 6 > 0.

The proof is given in Appendix.
We define a probability measure #2* on K, (u € V) by

VYD) = €u(g, ) p) W) (P V¢,(q, s)  for y € EL,.

Note that Y,z ¥’ ([y]) = 1. The corresponding measure v;;* on K, (u € V) is defined by
Vi (F) = 9%y, (F)).
Recall that

9B(q, s) a s)__ﬁﬂ(q, 5)
dq wid> 5) = os

ap(g,s) = —
and

1(q.5) = ap(q, $)q + aw(q, s)s + B(q, 5).
We have the following result.

Proposition 3.2 (Extension of Proposition 11.4 of Falconer [2]).

(a) VIS (KON Y foru e V.

(b) For all x € K,ia“’a”) where a, = ap(q,w) and a,, = a,,(q, 5) for some q and s, we have
log vI*(B(x,7)/logr — f(q,s)asr — 0.

Proof

(a) Let € > 0 be given. Let § > 0 be sufficiently small in Lemma 3.1. Let x € K,, and
Xi(x) = 0,00, - - 00, (J,) Where eje; - - ¢ € EX) and x € 6,6, - - - 0, (J,).

Let a; = max{&,(q + 6, 9)&(q, 8)™' 1 v € V},a, = max{&,(q + 6,5) '¢,.(q,5) : v € V}and
¢ = max{¥,(q +9,s,B(q, s) + (e — ap(q, 5))6) : v€ V}. By Lemma 3.1, we have 0 < ¢ < 1. Let
IX] = sup{lx =yl : x,y € X}.
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Then we have

V(X pu(Xi(x)) 21Xk ()| 7€)
= v 1< pu (X ()1 Xi ()€ )

< f Pu (X (0))° [ X5 (0| € dyd (x)

= a9 ), D PO ) T p ) W) r(y PV, (g, 8)

" k
VeV yeg®

= &g 907 D D pITIW) P eI (g, 5)

k
VeV yeEy)

=g ), D PO POV (g + 5, 5)

k-1
yev VEELy )

£(q+0,9)7 D D pe)Tw(e) ref L (g + 5, 5)

VeV e€k,,
(g +6.9)7'ég, )
<& Y D POITWE) TP (g + 6, 5)

yev yeE;ﬁf”
P,(q + 6, 5,8(q, 5) + (€ — @)d) &(q + 6, 5) " &g, 5)
<E(g 97 ), DL POTWE) eV (g +6,5) e ay

k-1
yeV ’)’EEEW )

=& 97 Y D POTIW) TP (g + 6, 5)

(k=2
€V yegl?

E(q+6,97 ). Y PO w(e) r(ef VNI (g +6,5) ¢ ar

YEV €€k,

<&@ ), DL PIOITIWE) I (g 46, 5)

=y

Y.(g +6,5,B8(q,5) + (e — a,)d) c ar
< ( )—l g+0 s ),B(q,s)+(e—a,,)6 S 2
<&ug,s pTOW(y) r(y E(g+0,5)c” a

Ve

< (g9 Eulq +6,9)
Eq+6,57 D ) pe) P w(e) r(ef P (g +6,5) ¢ ap

xeV ecE,,
<EAq ) E(g+ 6, )Wu(g + 6, 5,8(q, 5) + (€ — @,)d) ¢ a

< &g ) €+ 6, 5) F ar < ararct.
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We have

00

VI (s pu(Xe (%)) = 1Xk(x)|*7€ forsome k> ko) < Z araxc® < ayard /(1 - o).

k=ko

It follows that for v -almost all x,
,}Lrgo inf log p,(Xi(x))/ log |Xi(x)| 2 @) — €.
This holds for all € > 0, and so
@, < lim inf log p, (X (x))/ log [Xx(x)].

Similarly we have for suffiently small 6 > 0,

v (x  pu(Xi()) < 1Xp(x)|%*€ for some  k > ko) < Z bibyd® < bybyd® /(1 = d)
k=ko

33

where b, = max{&,(g — 6, 9)é(q, 5)™" 1 v € V), by = max{&, (g — 6,5)'é(q, 5) 1 v € V) and

d =max{¥,(q—-6,s,6(q,5)+(e+a,)0):veViand 0 <d < 1.
So

khfolo sup log o, (Xi(x))/ log [Xx(x)| < a).
It means that for v¥’-ae. x € K,
klgg log p,(Xi(x))/ log | X, ()] = ).

It holds that by Edgar-Mauldin([1] p.610),

1 u B ) . . . 1 u X
im log pu(B(x. 1)) _ @, ifandonlyif lim log pu(Xi(x)) _ ».
r—0 log r koo log | Xi(x)]

So for v¥*-almost all x,

im log p.(B,(x)) ~ lim log o, (X (x)) _

r—0  logr k=0 log |Xi(x)| P

We have v&* (K7 ) = 1.
In the same way we obtain for v{*-a.e. x € K,

lim log 0,(X,(x))/ 10g 1Xk(x)| = e,

and for v¥*-almost all x € K,,,

I B 1 X
lim 1082BE ) _ o 10g0uXi(x)
=0 logr koo log | X ()]

W

and v7S (K @)y = 1,

Since Kt(‘ap(q,x),aw(q,s)) _ Kli(tp(q,s),*) A Kf,*’““’(q's)),

vz’s ( Kl(la,,(q,S),aw(q,S))) -1
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(b) We have
log viy” (Xi(x)) _ logéu(q, 5)”! ‘g log p,,(Xi(x))
log [ X (x)l log [ X (x)l log | X (x)|
logou () o logl X logéia.»)

log | Xi(x)| log [X;(x)| ~ log|Xi(x)|
Forall x € K(wp(q»S),rrw(q,s))’

log v (Xi(x))

e Xl ¢ ap(q,s) + s aw(q, s) + B(q. 5) = f(q. ).

As noted before

. logvi (B(x,r) .. logvlI'(Xi(x))
lim = lim
r—0 logr k- log | Xi(x)|

and so we have the result.

Proof of Theorem 1
The facts that

dimy K = dimp K7 = f(g,0)
where a), = —@ for some ¢, and that
q
dimyg K& = dimp K& = £(0, s)

where a,, = —% for some s are proved in Edgar-Mauldin [1].

By Proposition 3.2, v is concentrated on K.

' with @, = —g—fj(q, s) and @, = —%(q, 5).
For x € K™ we have v/ (B, (x))/ logr — f(q,s)asr— 0.

By Proposition 3.1, we have the result.

Appendix
Proof of Proposition 2.3
Proof of (A)
(i) Let g and s be given. Write &, = x* %™ where x, > 0 and
D0 Heyxl = xi forall ueV.
veV ecE,,
Then
DU peiwe)r ey g, = 3 N () r(e)x) 0 re)x) (e
v eckEy,, v e€E,,
= x4 Z —-dq —ds Z Z r(e)?x?
v v eckE,,

_ dq—ds_d _
=Xy xu - §L¢~

Therefore ®(q, s,d —dq — ds) = 1, and so B(q, s) = d — dq — ds.
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(ii) By (D), @,(q, $) = ~3(q, 5) = d and @,,(q 5) = =% (g, 5) = d.

(iii) By (), f = qap, + sa,, + B =dg +ds + (d — dg — ds) = d.

(iv) Lety =ejey...er € E,(fv), and x,,;, = min, x, and Xx,,,,, = mMax, X,,.
Note that

k
(o, r(@)x,) = (x5, r(y)x,)
i=1

k
p) =] | plen =
i=1

where e; € E,,,,.
So

log p(y) ( log(xv/xu))
=d|l + ————].
log r(y) " Togr(y)

Leto e Ef,k), then

log p(alk) log(x,/xy)
log rok) d(l " Jog rolk) )

where ok € E,(,kv)

Therefore log p(olk)/ log r(olk) — d as k — oo, because log r(olk) — —co and Xy /[ Xpmax <
X/ Xy < Xmax | Xmin-

Similarly we have logw(ok)/ log r(olk) — d as k — oo.

Proof of (B) and (B’)
(1) Let ¢,,(s) = B(0, 5), i.e., (0, 5, ¢,,(s)) = 1. Let y,(s) be the right eigen vector for which

D0 W@ @™ Vy(s) = yu(s)
veV e€cE,,
forallu e V.
Let &,(s) = y,(s)x,%, then
D0 P wie) re) g (s) = N N G (), M w(e) () Dy (5)x,

veV ecE,, veV ecE,,

=517 D W) O™ y(s) = 5,y (s)

veV ecE,,
= &u($).

Therefore ®(q, s, —dq + ¢,,(s)) = 1, s0 B(q, s) = —dq + ¢,.(5).

The fact that B(g, s)(= dq + ¢,,(s)) is a strictly convex function of s, i.e., @,,(s) is a strictly
convex function of s is proved in the same way as the proof of Proposition 3.3 (B) in Edgar-
Mauldin([1]).

(ii),(iii) and (iv) are also proved in the same way as the proof of Proposition 3.3 (B) in
Edgar-Mauldin([1]).

Proof of (B’) is similar.
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Proof of (C)
The proof is similar to the proof of Proposition 3.3 (B) of Edgar and Mauldin ([1]).

Proof of Lemma 3.1

Note that
1=Wu(q+6,58+06,9)=&lq+657 Y > pe) w(e)r(ef "¢ g+, s).
veV ecE,,
Recalling that g—g = —a, we have

B(g +6,5) = B(g,s) — alg, s) § + O < B(g, s) + (—a(q, 5) + €)6,

for sufficietly small § > 0. Since 0 < r(e) < 1, we have
1 = ‘Ilu(q + 59 S,,B(q + 6, S)) > lPu(q + 67 S’ﬁ(qs S) + (_a(q’ S) + 6)6)

Similarly we have other inequalities.
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