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Abstract

We continue our work in [9] on an effective relationship between the sequence of
probability distributions and the corresponding sequence of probability distribution
functions. In order to deal with discontinuous distribution functions, we define the
notion of Fine topology on the whole real line, and show that, when a probability dis-
tribution is associated with a Fine continuous distribution function, the computability
of the former and the sequential computability of the latter can be effectively mutually
translatable under a certain condition. The effectivity of the translations is secured by
the treatment of the sequences of the objects in concern. The equivalences of effective
convergences will also be proved.

Keywords: Computable probability distribution, Effective convergence of probability
distributions, Probability distribution functions, Fine computable func-
tions, Effective Fine convergence

Introduction

The domains of our discourse are the real line, the real functions and the probability distri-
butions on the real functions.

We are interested in the effective version of probability theory: the computability notion
of the probability distributions as well as that of the probability distribution functions, their
effective convergences and some related topics.

Recall that the convergence of a sequence of probability distributions, as well as that of a
sequence of random variables is a fundamental concept in the theory of probability and statistics.
This together with the convergence of a sequence of probability distribution functions is one of
the major subjects in an elementary course of probability theory.

A probability distribution is a Borel probability measure on the real line.

For a probability distribution u, the corresponding probability distribution function F' is
defined by F(z) = p((—oo,z]). A probability distribution function is characterized by the
following properties:

(Fi) monotone non-decreasing;

(Fii) right continuous;

(Fiii) limy—y — oo F(z) = 0 and lim, o F(z) = 1.
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Subsequently p, pn, v and v, will denote probability distributions, and F, F,, G and G,
will denote the corresponding probability distribution functions. This correspondence is one-
to-one and onto, and the following three convergences are equivalent (cf. [2]). (u(f) represents
Jo f(z)p(dz), the integral of a real function [ with respect to a probability distribution f.)

(i) pn — p weakly, that is, u,(f) converges to u(f) for an arbitrary bounded continuous
function f.

(ii) pn — p vaguely, that is, p,(f) converges to u(f) for an arbitrary continuous function
f with compact support.

(iii) Fn(xz) — F(z) at any = which is a continuity point of F.

The computability of probability distributions on the unit interval based on representation
theory has been treated in [3], [12], and [15].

In [9], we have defined the computability and the effective convergence of probability dis-
tributions and those of the corresponding probability distribution functions in the scheme of
Pour-El and Richards [11]. There, we have presented an effective treatment of probability dis-
tributions and the corresponding probability distribution functions under the assumption of the
existence of the bounded densities. In such a case, it holds that the computability of {fim} is
equivalent to the sequential computability of { F;,} (Theorem 2:[9]). It has also been shown that
a computable sequence of probability distributions {u.m} converges effectively to a probability
distribution p if and only if {F,,} converges effectively pointwise to F' (Theorem 3:[9]).

The existence of a bounded density for a probability distribution implies the effective uniform
continuity of the corresponding distribution function, which secures the desired equivalences
above. Familiar distributions such as discrete probability distributions and Dirac distribution,
however, possess no density functions. Furthermore, the probability distribution function corre-
sponding to Dirac distribution is discontinuous. Nevertheless, Dirac distribution is computable
according to our definition in [9)].

This suggests that we should consider a wider class of probability distribution functions
with a certain computability property in order to cope with the case of probability distributions
which may not have density functions.

We have no general characterization of probability distribution functions which correspond
to computable probability distributions, and hence we must start with some appropriate class of
functions. It has turned out that the family of Fine computable functions (defined on the whole
real line) is a good candidate for such a domain. We will therefore work on the domain of Fine
computable sequences of functions (cf. [7], [10]) as the first step. Note that the distribution
function of the Dirac probability distribution is Fine computable.

The value of the family of Fine computable sequences of functions lies in the following facts.

(a) It is endowed with some computability properties and contains some probability distri-
bution functions which correspond to some computable (sequences of) probability distributions.

(b) The effective convergence of a function sequence can be defined within the domain.

(c) It is closed under the effective convergence.

In Section 1, we briefly review the theories of the computability of real numbers, functions
and distributions (cf. [11], [9]).

In Section 2, we extend the definition of Fine space to the whole real line, and summarize
the basic facts of Fine computability (cf. [5], [8], [10], [16]) .
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In Section 3, we first prove that the sequential Fine computability (Definition 2.4) of prob-
ability distribution functions implies the computability of the corresponding probability distri-
butions (Theorem 3.1). Then, we give an example which shows that the converse does not hold
(Example 3.4). Finally, we prove that the computability of a sequence of probability distri-
butions implies the sequential Fine computability of the corresponding sequence of probability
distribution functions under the condition that the latter is effectively Fine continuous (Defini-
tion 2.5, Theorem 3.6).

In Section 4, we focus on the convergence problems. Let {F,,} be a sequentially Fine
computable sequence of probability distribution functions and let F' be a sequentially Fine
computable probability distribution function, with the corresponding distributions {u~} and
u respectively. Then, {um} converges effectively to u if {F.} converges effectively dyadic-
irrationally pointwise to F (Definition 4.4, Theorem 4.5). On the other hand, if we assume
further that F is effectively Fine continuous, then the effective convergence of {1, } to p implies
effective dyadic-irrationally pointwise Fine convergence of {F,} to F' (Theorem 4.6).

1. Preliminaries

Let us first state the overall assumption that we will work with the real numbers and real
functions, unless otherwise stated.

We first review briefly the introductory part of the computability theory on the real line
developed by Pour-El and Richards [11] as well as some basics of computable probability dis-
tributions on the real line. A sequence of rational numbers {r,} is said to be recursive if there
exist recursive functions «, B and v such that r, = (—1)”’(”)%. A sequence of real numbers
{Zm,n} is said to converge effectively to {x.,} if there exists a recursive function a(m, k) such
that n > a(m, k) implies |Zm n —Zm| < 35. A sequence of real numbers {z,,} is said to be com-
putable if there exists a recursive double sequence of rational numbers {7, »} which converges
effectively to {zm}.

We adopt the definition of the computability of continuous real functions by Pour-El and
Richards in Chapter 0 of [11]. In general, an object a is called computable if the sequence
{a,a,--- ,a,---} is computable.

A sequence of (real) functions {fm} is said to be computable, if it is (i) sequentially com-
putable, that is, {fm(zn)} is computable for any computable sequence of real numbers {z,},
and (ii) effectively continuous, that is, there exists a recursive function a(m,p, k) such that
z,y € [—p,p] and |z —y| < W imply | fim(2) = fm(y)| < 55. a(m,p, k) is called a modulus
of effective continuity of { fm }.

A sequence of (real) functions { fm } is said to be uniformly computable, if it is (i) sequentially
computable and (ii) effectively uniformly continuous, that is, there exists a recursive function
a(m, k) such that |z —y| < m implies | fm (z) — fm (v)]| < 2% We call this a(m, k) a modulus
of uniform continuity.

We say that {fm} is a computable sequence of functions with compact support { Kp} if {fm}
is a computable sequence of functions, {K,,} is a recursive sequence of positive integers and
fm(z) = 0 for |z| > K. It is easy to prove that a computable sequence of functions with
compact support is uniformly computable and the sequence of their maximums is a computable
sequence of real numbers.

Now, we cite some definitions and properties in [9], which will be used in the main context
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of this article.

Definition 1.1. (Computability of Probability Distribution) We say that a sequence of proba-
bility distributions {jm } is computable if it satisfies the following vague sequential computability:

{pm (fn)} is computable for any computable sequence of functions { f,} with compact support.

We say that a sequence of functions { f, } is effectively bounded, if there is a recursive function
M (n) with | fn(z)] < M(n) for all  and n.

Theorem 1.2. {un} is vaguely sequentially computable if and only if it is weakly sequentially
computable, that is, {ttm(fn)} is a computable double sequence of real numbers for any effectively
bounded computable sequence of functions {fn}.

Theorem 1.3. If a sequence of probability distribution functions {F,,} is sequentially com-

putable, then the corresponding sequence of probability distributions {um } is computable.

Definition 1.4. (Effective convergence of a sequence of probability distributions)

A sequence of probability distributions {pm} is said to effectively converge to a probability
distribution g if {pm(fn)} converges effectively to {u(fn)} for any computable sequence of
functions {f,} with compact support.

Theorem 1.5. Let {um} be a computable sequence of probability distributions which converges

effectively to a probability distribution p. Then p is computable.

Theorem 1.6. Let {um} be a computable sequence of probability distributions and p be a
probability distribution. Then, the effective converge of {pm} to u is equivalent to the effective
weak convergence, that is, {um(frn)} converges effectively to {u(fn)} for any effectively bounded

computable sequence of functions { fn}.

2. Fine computabilities

Fine topology and Fine computabilities were originally defined on the interval [0, 1) ([5], [8],
[10]). There is no difficulty in extending them to the whole real line R.

We call an interval of the form [zik, ;7) a dyadic interval, where k£ and ¢ are positive integers
and ¢ and j are integers.

The topology generated by the set of all dyadic intervals is called Fine topology on the real

line.
Let I(k,i) = [5%, 55 ) and let J(z, k) be the unique I(k, i) which contains . If we denote the
integer part of a real number y with [y], then i = [2"z] and J(z, k) = [55> 55). {J(z,k)} serves

as a fundamental neighborhood system of = in this topology. It is also an effective uniformity,
and hence Fine topology is an effective uniform topology ([13], [16]).

Fine computability on the real line R is defined in terms of Fine topology analogously to the
Euclidean computability defined by Pour-El and Richards (Section 1, [1], [6], [7], [8]).

Definition 2.1. (Effective Fine convergence of real numbers) A sequence of real numbers
{Zn,m} is said to Fine converge effectively to a sequence {x,,} if there exists a recursive function
a(n, k) such that xn,m € J(zn, k) for all m > a(n, k).
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Definition 2.2. (Fine computable sequence of real numbers) A sequence of real numbers {z, }
is called Fine computable if there exists a recursive sequence of rational numbers {7y, } which
Fine converges effectively to {zn}.

We say a sequence of real numbers {x,} is dyadic rational if all z,, are dyadic rational and
dyadic irrational if all x,, are dyadic irrational. We abbreviate ‘dyadic’ to ‘d-’.

Definition 2.3. (Recursive sequence of d-rationals) A (double) sequence {rn,m} is called a
recursive sequence of d-rationals if r,, », = (—1)"’("””)M for some recursive functions a, 3

Sa(n,m)

and 7.
We list some properties of Fine computable sequences of real numbers.

Fact 1. A sequence of real numbers {z,} is Fine computable if and only if there exists a
recursive sequence of d-rational numbers {7y m»} which Fine converges effectively to {z,}.

Fact 2. A real number is Fine computable if and only if it is computable.

Fact 3. A Fine computable sequence is computable. The converse is not necessarily true([1],

[6]).
Fact 4. For a sequence of d-irrationals, computability and Fine computability are equivalent.
We say that a computable sequence is an effective separating set if it forms a dense subset.

Fact 5. An effective enumeration of all d-rationals {e;} forms an effective separating set with
respect to Fine topology.

Although the Fine computability of real sequences is not necessarily closed under arithmetic
operations, we can claim the following.

Fact 6. If {z,} and {y,} are Fine computable sequences of real numbers, then {max{z.,,yn}}

and {min{z,,yn}} are Fine computable.

Fact 7. Suppose that {z,} is a Fine computable sequence.
(1) If {rn} is a recursive sequence of d-rational numbers, then {z, +7,} is Fine computable.
(2) For an integer k, {31t} is Fine computable.

We define some notions of the Fine computability of a sequence of functions ([4], [5], [8],
[10]).

Definition 2.4. (Sequential Fine computability) We say that a sequence of functions {f,}
is sequentially Fine computable if {f,(x)} is computable for any Fine computable sequence

{zm}.
Let {e;} be an effective enumeration of all d-rationals.

Definition 2.5. (Effective Fine continuity) A sequence of functions { f,, } is said to be effectively
Fine continuous if there exists a recursive function a(n, k, ¢) which satisfies the following (a) and
(b).

(a) z € J(es,an, k,i)) implies | fn(x) — fale:)| < 27F.

(b) U2, J(ei,a(n,k,i)) =R for each n, k.
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Definition 2.6. (Effective locally uniform Fine continuity) A sequence of functions {f,} is
said to be effectively locally uniformly Fine continuous if there exist recursive functions a(n, k, ©)
and f(n, i) which satisfy the following (a) and (b).
(a) For all 4, n and k, |fu(x) — fu(y)| < 27% if 2,y € J(es, B(n,4)) and y € J(z, a(n, k,)).
(b) U=, J(ei, B(n,i)) =R for each n.

Definition 2.7. (Effective uniform Fine continuity) A sequence of functions {f,} is said to
be effectively uniformly Fine continuous if there exists a recursive function a(n,k) such that,
for all n,k and all 2,y, y € J(x, a(n, k)) implies | f.(z) — fn(y)| < 27"

Although the definitions of the effective Fine continuities of a sequence of functions appar-
ently depend on the choice of {e;}, it can be proved that they are in fact independent of the
choice of {e;} (cf. [7], [10]).

Definition 2.8. (Fine computabilities of sequences of functions)

(1) A sequence of functions {f,} is said to be Fine computable if it is sequentially Fine
computable and effectively Fine continuous.

(2) A sequence of functions {f,} is said to be locally uniformly Fine computable if it is
sequentially Fine computable and effectively locally uniformly Fine continuous.

(3) A sequence of functions {f,} is said to be uniformly Fine computable if it is sequentially
Fine computable and effectively uniformly Fine continuous.

Definition 2.9. (Effective Fine convergence of functions, [8], [L0]) We say that a sequence of
functions {f»} Fine converges effectively to a function f if there exist recursive functions 3(k, )
and v(k, ) which satisfy the following (a) and (b).

(a) = € J(es, B(k,4)) and n = v(k,i) imply |fn(z) — f(z)| < 27F.

(b) U=, J(ei, B(k,i)) =R for each k.

We can likewise define effective uniform Fine convergence and effective locally uniform Fine

convergence.

3. Fine computability of probability distribution functions and the
corresponding probability distributions

We have treated in [9] the computability problem of probability distributions with bounded
densities. In that case, the corresponding distribution functions are uniformly computable.
Here, we do not assume the existence of bounded densities for probability distributions, and try
to characterize the corresponding distribution functions in a more general situation.

Theorem 3.1. If a sequence of probability distribution functions {F,} is sequentially Fine

computable, then the corresponding sequence of probability distributions {pm} is computable.

Proof. Let {fn} be a computable sequence of functions with compact support { K, }. We denote
its modulus of effective uniform continuity with a(n, k). Let us define

Tnpi=—Kn+ 55,0<i<2K,2” and

2K, 2P

frp(@) =320 fa (mnvpvi)x(zn,p,ifl:zn,p,i] (z).
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We note that {2} is a recursive sequence of d-rationals and |fn(z) — fnp(z)| < 55 for all z
if p> a(n,k).
On the other hand,

e (fa,p) = Z?flngp J(@np,i) (F (Tn,p,i) — Fon(Tn,p,i-1))

and hence {ftm (fn,p)} is a computable sequence of real numbers.
If we take p > a(n,k + 1), then

lm (fn) = i (frp)| < m(|fn = fapl) <SP, |fn(@) = fap()] < 2k1+1 < QL]&

This proves the effective convergence of {im (frn,p)} to {tm(fn)}. So {m(fn)} is computable.
O

The proof above is similar to that of Theorem 1.3 except that here we need to choose a Fine
computable real sequence. Theorem 3.1 is obviously stronger than Theorem 1.3.

The following two examples concern the case where no density is assumed, but the corre-
sponding probability distribution functions are Fine computable.

Example 3.2. (Dirac distribution) Let d, be the translated Dirac distribution, that is,

6a(A)—{ 1 if ac A

0 otherwise

Its probability distribution function satisfies

Note that d, has no density function. d.(f) = f(a), and d, is computable if a is computable.
D, is neither sequentially computable nor effectively continuous even if a is computable. How-
ever, D, is Fine computable if a is d-rational. O

Example 3.3. Let a be a one-to-one recursive function whose range is not recursive from the
set of all positive integers to itself. We notice that d = > ;2 2(,% < 1 and d is not computable.
Let us define

p=32 e 01y +(1—d)dr.

2(i—1)

The probability distribution function of p is

F= Zfil(z;:1 2a1(j) )X[l—

1

T

1,2%) + X[1,00)-

21

While F' is not continuous and hence not computable, F' is locally uniformly Fine com-
putable, and so it is necessarily Fine computable. By Theorem 3.1, u is computable. F(1_g) =
lim,41 F(z) = d is not computable. So, F' is not uniformly Fine computable. O

The next example shows that the converse of Theorem 3.1 does not hold.
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Example 3.4. We take the same « as in Example 3.3, and define

vV = (1 —d)5o+zz1 20‘%6

1.
21

The corresponding probability distribution function G is:

G = (1=d)xpn + 252 (5% 5am XL, 1) + X[1,00)-

200311

G(0) is not computable and hence G is not sequentially Fine computable. Moreover, G is
not effectively Fine continuous, and yet we can prove that v is computable.
For the proof, let f be a bounded computable function and put

Sm = 2ty ﬁf(%) + (1= 204#(1)).]“(0)

Then {sm} is a computable sequence of real numbers and, by the definition of the integral, it
holds that

v(f) = (1 —=d)f(0) + 32 5o (50):

W (f) = sml = | 2% 5 £(0) = df (0) + 232,11 5a £ (7))
= [EZni e (F(55) = F0)] <supg_ < 3 1£(0) = f(2)]

X o

for each integer m. The last term converges to zero effectively as m tends to infinity by thr
effective continuity of f. This proves that v(f) is computable.

The proof above is also valid for a bounded computable sequence of functions {f,}. So v is
computable. O

Remark 3.5. Example 3.4 shows that the sequential computability of a probability distribution
function is stronger than the computability of the corresponding distribution. Indeed, the
proof of Theorem 3.1 suggests that the existence of an effective separating set {x,} for which
computability of {Fy,(z»)} holds is sufficient for the computability of a sequence of probability
distributions {fim }. O

For later use, let us define functions wjh and w_, for a real number ¢ and a positive real

number A as follows:

1 if z<ec 1
w:h(az): —%(a:—c)—i—l if e<z<c+h ,
0 if t>c+h 3 wj'h
wc,h
1 if r<c—h 0 % ‘
w;h(:n): —%a:—c) if c—h<z<ece . c—h € cih
0 if v>c .
Figure 1:

w:h(x) and w;h(x)

Notice that, for computable ¢ and h, th and w_, are computable functions.
These functions satisfy

X(—sone—h] (£) W, (2) < X(—o0.e) (€) < W, (2) < X(—o0retn) (2)-

)
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Furthermore, for any probability distribution p and its probability distribution function F', it
holds that
F(e—h) < p(w,,) < F(e) < p(w),) < Flc+ h).

Suppose p is computable, ¢ is a computable real number, and {h, } is a computable sequence
of positive real numbers which converges effectively and decreasingly to zero. Then {u(w/, )}
is a computable sequence of real numbers and converges monotonically downwards to F(c). F
is thus right computable in the sense of [17].

The next theorem claims that, although the converse of Theorem 3.1 does not hold in general
circumstances, it can hold on a restricted family of distribution functions.

Theorem 3.6. Let {um} be a computable sequence of probability distributions. If the corre-
sponding sequence of probability distribution functions {Fn} is effectively Fine continuous, then
{F} is sequentially Fine computable.

Proof. Assume that {F,} is effectively Fine continuous with respect to a(m,k,i), that is,
z € J(es,a(m, k,i)) implies |Fy(z) — Fu(es)| < 55 and U2, J(ei, a(m, ki) = R.

Assume further that {{m} is computable and {z,} is a Fine computable sequence of real
numbers.

For each m,n, k, we can find effectively i = i(m,n, k) such that z, € J(e;,a(m,k + 1,7)).
With such 4, J(e;, a(m, k+1,7)) = | £ 4L ) for some integer £ = £(m, k, i), which

Sa(m,k+1,1) ) go(m,k

is obtained effectively. Therefore, {%} is a recursive d-rational sequence.
¢ ¢
Put ymne = %(azn + Mﬁ) and Zmnk = p(w;'mh), where h = %(Wikﬁ_m — In).
Then {Ym n,x} is Fine computable by virtue of Fact 7 and {zm »,x} is a computable sequence of

real numbers. By definition,
Ty Ym,n,k € ‘](ei7 a(m7 k+ 1, Z)):

+
X(—o0,zn] S Wa p S X(=00,ym,n, 1]

Therefore,
|F'm(xn) - Zm,n,k‘ < |F7n(xn) - F’m(ym,n,k)‘ < |F7n(xn) - F’m(ei)| + |F7n(€i) - F’m(ym,n,k)‘ < 2%
Thus, {zm,n,k} converges effectively to {Fy,(x,)} and hence {F,,(z,)} is computable. [

4. Effective convergence of probability distributions
and probability distribution functions

We start this section with the following examples of convergent sequences of probability
distributions.

Example 4.1. Let 0, be the translated Dirac distribution in Example 3.2. If we define
o, = 62%&7 then pm (f) = f(z%) converges to f(0) = do(f) for a continuous f. This convergence
is effective if f is computable and hence {um} converges effectively to do.

Since Fr(z) =0 if 2 < 5 and Fy(z) = 1if 2 > 54, {F»(0)} does not converge to Do(0),
although {F,,(z)} converges to Do(z) uniformly on (—oc0,0) U [%,00) for any positive integer
n. O
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The above example shows that the convergence of probability distributions does not imply
the convergence of probability distribution functions.

Example 4.2.  The uniform probability distribution on [a,b] is the distribution with density
Ua,b(T) = 2= X[a,p) (). Its distribution function U, is given by

0 if z<a
Usp(z) = 5= if a<a<bd
1 if >0

Uq,b(x) is bounded, but not computable even if a and b are computable. On the other hand,
U,,p is uniformly computable if @ and b are computable.

Take a computable a and put b,, = a + % If we denote the corresponding distribution fiy,,
then {um} converges effectively to dq, while U,

1
a,a+m

(a) = 0 does not converge to Dq(a) =1. O

Example 4.3. Let i be the probability distribution in Example 3.3. If we define p.,, by

m = 32304 ﬁé(lf ) T (1= 2(1%)51,

1
2i—1

then {um} converges effectively to p.
For the v in Example 3.4, it holds that
vm = (1-371", ng(i))(sO +20m, za%éz%
converges effectively to v. O

Definition 4.4. (Effective dyadically irrationally (d-irrationally) pointwise convergence) Let
{F} be a sequence of probability distribution functions and let F' be a probability distribution
function. We say that {F,,} converges effectively d-irrationally pointwise to F if {Fy,(xn)}
converges effectively to {F(zy)} for any computable d-irrational sequence {zy }.

Theorem 4.5. Let {F,,} be a sequence of probability distribution functions and F be a prob-
ability distribution function. Let {um} and p be the corresponding probability distributions. If
{Fn} converges effectively d-irrationally pointwise to F', then {jum} converges effectively to .

Proof. We consult and effectivize the proof in [14].

We prove that {pm(f)} converges effectively to p(f) for a computable function f with
compact support. Let (k) be a modulus of uniform continuity of f, K be an integer such that
f(z) =0if |z| > K and M be an integer such that |f(z)| < M for any x.

Put

Tpi=—K—1+55,0<i< (2K +1)2°.

Then {xp,;} is a computable d-irrational sequence, and {F,,(xp,:)} converges effectively to
{F(zp,:)} by virtue of the assumption, that is, there exists a recursive function B(p,i,q) such
that m > B(p, 4, q) implies
|Fm (p,i) = F(@p,i)| < 57 (4.1)
Let us define
Fo(@) = S @)X w10 (): (4.2)

otV NES RS EARHERY 5 44 55 PR 27 43 A



Fine Computability of Probability Distribution Functions and Computability of Probability Distributions on the Real Line 117

Then, for any p > y(k), |f(z) — f,()] < 3, hence

u(f) = 1(fo)] < 3y and [ (f) — o (fo)] < 5 for all m. (4.3)
[t () = ()| < N (F) = pom ()| + L () = 0(fo)] + |1(F) — (). (4.4)
By Equation (4.2)
p(f) = SV f(ep) (F(zpi) — Flzpio1)),
pm(fp) = ST f(ap.0) (Fan(2p,3) — Fin(@p,i-1))- (4.6)

For a k with p = ~v(k + 1) in (4.3), we have

[ () = b (fyer2)] < e and |u(fyer2y) — 1(F)| < gt (4.7)
For any ¢ and m > max,, < (a4 1)27(k+2) B(y(k+2),1,q), by Equations (4.1), (4.5) and (4.6)

(2K+1)27(k+2)

lm (fyer2)) = (vl < 205 (1f @y 2y, ) Em (@ (k42),6) — F (@ 112),0)
Hf @y a2y N EFm @y ka2),i-1) — F(Tyer2yi-1)])  (4.8)
< 2M (2K +1)27(k+2)
X 2q .

Ifweput =6+ M + K + 1+ ~v(k + 2) + k in Equation (4.8), then it holds

|/Lm(f’y(k+2)) - “(f’y(k+2))| < Qk%

Combining this with Equations (4.4) and (4.7)), we obtain

|l () = ()] < 55

This proves the effective convergence of {1 (f)} to pu(f).
We can easily extend the argument to a sequence of functions {f,}. O

Theorem 4.5 corresponds to Proposition 17 in [9]. In fact, Theorem 4.5 is a stronger version
of Proposition 17 in [9], since here we assume only d-irrational Fine convergence.

Theorem 4.6. Let {F,,} be a sequentially Fine computable sequence of probability distribution
functions and let F' be a sequentially Fine computable probability distribution. Let {um} and p
be the corresponding probability distributions. Assume further that F is effectively Fine contin-
uous. Then the effective convergence of {jm} to p implies the effective d-irrationally pointwise
convergence of {Fp} to F.

Proof. As in the previous proof, we consult the proof in [14].

We assume that {um } effectively converges to p and that F is effectively Fine continuous with
respect to a(k, i), and prove that { F,,(c)} converges effectively to F'(c) for any (Fine) computable
d-irrational c¢. This argument can be easily generalized to a Fine computable sequence of d-
irrational numbers.

Let us take the functions w:h(x) and w, ;, (z) in Figure 1. Tt holds that, for any h > 0,

Nm(wc_,h) < Fin(c) < Nm(th)a
Fle—h) < plwg,) < F(O) < p(wiy) < Fle+ h). (4.9)
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If ¢ and h are computable, then i, (w],) and pm(w, ») respectively converge effectively to
w(w C7,1) and p(w, ), respectively, due to Theorem 1.6.
On the other hand, we can find effectively ¢ = i(k) and ¢ = £(k) such that

cc J(@i,()é(k, ’L)) [W, ﬁikl”) It holds then that

2a(k i) <c< 2a(k 1) a‘nd |F(ZU) - F(61)| < 2%
for any = € J(e;, a(k,i)) by virtue of the effective Fine continuity of F. Let us take hy =
1 min{c — ﬁ, z(ffikll) —c¢}. Then {c+ hix} and {c — hi} are Fine computable d-irrational

sequences and they are contained in J(e;, a(k,7)). Hence, by the assumption on {p.,} and
1L, {,um(wzhk)} and {um(w_ ), )} respectively converge effectively to /L(wj ) and p(wy, ).
We denote the corresponding moduli of convergence with 57 (k, j) and 37 (k,j) respectively.
This means that m > B*(k J) implies |gm (w Chk) — p(w] hk)| < 55 and m > B~ (k,j) implies
ltm(w, ) — wp(w,p,, )| < 57. Inequalities in (4.9) imply

u(we ) = mlwd, ) < IF(e+hi) = F(e—hi)| < |[F(c+hi) = Flei)| +[F(e:) = Fle—hi)| < 5%

4.10
If m>max{pt(k+2,k+2),8 (k+2,k+2)}, then by virtue of (4.9) again o
p(wsy, ) = s < (Wi, ) < Fn(0) < pm(wiy, ) < p(wdy, )+ s
This with u(w;hk+2) < F(e) < p(wihHQ) implies
[Fn(e) = F(O)| < lulwy,, ) — nlw, )]+ 5.
Combining this with (4.10), we obtain |F},(c) — F(c)| < 2&% < 2% O
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