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A double-layer high-Tc superconductor, Bi2Sr2CaCu2O8+δ
(Bi2212), has attracted great interest. Atomic scale inho-
mogeneity, energy gap distributions, and nematic electronic
states have been shown by scanning tunneling spectroscopy
(STM/STS) measurements.1, 2) An incommensurate structural
supermodulation due to a mismatch between rock salt BiO
layers and CuO2 planes in a perovskite structure is character-
istic of Bi2212.3, 4) The energy gaps spatially correlate with
the local oxygen density on supermodulation.5–7)

Nuclear quadrupole resonance (NQR) is a powerful tech-
nique that can be used to reveal microscopic electric and mag-
netic properties of Bi2212.8–11) Zero-field Cu NQR experi-
ments for polycrystalline Bi2212 have revealed that the Cu
NQR frequency spectrum largely spreads over ∼ 10 MHz in
an asymmetrical edge shape.11) Broad NQR spectra indicate a
large number of inequivalent Cu sites. The asymmetric broad-
ening is associated with the atomic scale modulation on the
BiO layers with oxygen distribution because of its similarity
to an incommensurate charge density wave.11, 12) As for the
nuclear spin-lattice relaxation time, however, its spectral dis-
tribution in the broad Cu NQR spectrum remains to be estab-
lished.11, 13)

In this note, we report on Cu NQR studies in the super-
conducting state of powdered single crystals of Bi2212 (Tc

= 92 K). We observed that the Cu nuclear spin-lattice relax-
ation rate 1/τ1 increases as the Cu NQR frequency decreases
from the edge to peak frequencies in the asymmetrically broad
NQR spectrum at 4.2 K, which indicates the spectral distribu-
tion of the spin correlation.

Single crystals of Bi2212 were grown by a travel-
ing solvent floating zone method. The composition of
Bi2.1Sr1.9CaCu2O8+δ was identified by inductively coupled
plasma atomic emission spectroscopy. Magnetization mea-
surements indicated Tc = 92 K and a high critical current den-
sity at 77 K. For NQR experiments, the single crystals were
crushed into powdered samples, which were subsequently im-
mersed in paraffin oil to isolate the grains electrically.

A phase-coherent-type pulsed spectrometer was utilized to
perform zero-field 63,65Cu NQR (nuclear spin I = 3/2) ex-
periments for the powdered single crystals. Frequency spec-
tra were obtained from recording the integrated intensity of
the spin-echo signal at each frequency point by point. The

∗E-mail address: yitoh@cc.kyoto-su.ac.jp

recovery curves of Cu nuclear magnetization, nuclear spin-
lattice relaxation curves p(t) ≡ 1−M(t)/M(∞), were obtained
by an inversion recovery technique as a function of time t
after an inversion pulse, where the nuclear spin-echo M(t),
M(∞)[≈ M(10T1)], and t were recorded.

Figure 1 shows zero-field 63,65Cu NQR frequency spectra of
Bi2212 at 4.2 K and a reference spectrum of YBa2Cu4O8.14)

In Bi2212, the Cu NQR spectrum spreads over a broad range
of ∼10 MHz and has the features of a peak at a low frequency,
an edge at a high frequency, and asymmetry. These fea-
tures are consistent with those previously reported.11) Dashed
curves indicate the experimental decomposition of 63,65Cu
spectra reproduced from ref. 11.
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Fig. 1. Zero-field Cu NQR frequency spectra of Bi2212 and a reference
spectrum of YBa2Cu4O8.14) An asymmetric edge shape is characteristic of
Bi2212. Solid curves are guides for the eyes. Dashed curves are reproduced
from ref. 11 for a possible guide to the experimental decomposition of 63,65Cu
spectra.

Figure 2(a) shows the recovery curves at the peak and edge
NQR frequencies at 4.2 K. The recovery curve depends on
the Cu NQR frequency. In a uniform system, the theoretical
recovery curve in Cu NQR should be a single exponential. In
Bi2212, all the recovery curves were nonexponential. They
could not be reproduced by an overlap effect of 63,65Cu sig-
nals at the same sites, because 1/τ1 in a magnetic scattering
process, being proportional to the square of the nuclear gyro-
magnetic ratio γ, gives only a small difference in the isotopes,
(65τ−1

1 )/(63τ−1
1 ) = (65γ/63γ)2 ≈ 1.15. We analyzed the recovery

curves by a product function of an exponential function times
a stretched exponential function,

p(t) = p(0)e−3t/T1−
√

3t/τ1 , (1)

with the fit parameters p(0), T1, and τ1.14–19) Solid curves in
Fig. 2(a) show the results from least-squares fits of eq. (1).

Figure 2(b) shows frequency dependences of 1/τ1 (open
triangles) and 1/T1 (solid triangles) at 4.2 K, which were
obtained from least-squares fits of eq. (1). 1/T1 is low and
1/τ1 is predominant. 1/τ1 increases as the NQR frequency de-
creases from an edge of 25.5 MHz to a peak of 20.5 MHz.
The frequency dependence of 1/τ1 in Bi2212 is considerably
weaker than those in La2−xSrxCuO4−δ

19) and Zn-substituted
YBa2Cu4O8.14) From 20.5 to 19 MHz, however, 1/τ1 slightly
drops and again increases below 19 MHz. The nonmonotonic
frequency dependence of 1/τ1 may be explained by an overlap
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Fig. 2. (a) Recovery curves of Cu nuclear spin-echoes at peak and edge
frequencies in a Cu NQR spectrum of Bi2212 at 4.2 K. Solid curves show
the results from least-squares fits of eq. (1). (b) Frequency distributions of
Cu nuclear spin-lattice relaxation rates 1/τ1 (open triangles) and 1/T1 (solid
triangles) at 4.2 K. The relaxation times were obtained from least-squares fits
of eq. (1).

effect of 63,65Cu signals at different sites. The major compo-
nent of Cu nuclear magnetization may change from 63Cu to
65Cu as the NQR frequency decreases from 20.5 to 17.5 MHz.
This assignment is consistent with a possible decomposition
of the Cu NQR spectrum in Fig. 1.

The nuclear spin-lattice relaxation rate is proportional to
the wave-vector-averaged dynamical spin susceptibility at an
NMR/NQR frequency.20) A gapless d-wave superconductor
has a residual local density of states ρ(EF) at the Fermi level
EF at low temperatures in the superconducting state.21–23) The
scattering process due to superconducting quasiparticles in
the residual ρ(EF) causes nuclear spin-lattice relaxation. The
frequency distribution of 1/τ1 in the broad Cu NQR spectrum
might be associated with the distribution of the local density
of states in STM/STS24) and the distribution of local spin cor-

relation in the CuO2 planes in the superconducting state.7, 23)
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