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Abstract

Positron emission tomography (PET) is an innovative inspection method for early detec-
tion and treatment of cancer etc.  The practical use of PET is rapidly advanced in recent 
years.  However, the resolution of the PET images is yet to be improved for both purposes.  
There are two elements in improving the resolution of the PET images.  One is the gamma-
ray detection-system, and the other is the image processing system.  The purpose of this 
work is to examine whether or not the improvement of the resolution of the PET images 
can be achieved by image-restoration technique.  For this purpose, we explore Bates’ blind 
deconvolution that is regarded as an extended method of the one-dimensional signal condi-
tioning with zero-values of signals.  We developed some new technical tools for that study 
and show how they are useful.  We present a PET image that we successfully enhanced by 
means of Bates’ blind deconvolution.

1. Introduction

The practical use of positron emission tomography (PET) is advanced in recent years1).  

The PET is one of the medical treatment inspection methods of discovering focuses by de-

tecting the positions of radioactive sources.  By a medicine injected into the inside of the 

body, positrons are emitted at a focus, where a large amount of energy is consumed.  Then, 

pairs of two photons (gamma rays) are emitted into opposite directions by pair annihila-

tions of electrons and positrons at the focus.  The radiation sources are specified by mea-

suring the pairs of two photons simultaneously with detectors placed on the surroundings 

of the specimen.  By analyzing the radiation sources the image of the focus is obtained.

The PET is being used for actual medical treatments as stated above.  However, at pres-

ent the resolution of the PET images is not high enough for the diagnosis use.  There are 
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two elements in achieving a high resolution of the PET images.  One is the correlation-

detection system of gamma rays, and another is the image-processing system.  The pur-

pose of this work is to examine whether or not the resolution of the PET images can be 

improved by image-restoration.

There are various methods for the image-restoration processing.  They are, for example, 

the image-restoration using windows2), the frequency-response analysis and etc.3).  The 

aim of this work is to restore the PET images for the medical treatment.  We have no 

advance knowledge about blur-images that may be convoluted in observed PET images.  

Hence, the image restoration that we have to deal with in this work is the so-called “blind 

deconvolution”.  An advanced method in this blind deconvolution is the zero-sheet method.  

This is regarded as an extended method of the one-dimensional signal conditioning with  

zero-values of signals.  The zero-sheet method is mathematically elegant and innovative 

in the sense that it enables us to remove blur-elements analytically.  Bates presented the 

basic idea of the zero-sheet method in 19874).  However, it did not become popular because 

it is based on unfamiliar mathematics of the z-transform.

In this work, we examine the blind deconvolution of the PET images using the Bates’ 

zero-sheet method.  As we have mentioned, the zero-sheet method is not a popular image 

processing.  Therefore, there are a lot of technical subjects that should be solved for the 

practical use of the zero-sheet method.  Further, because the zero-sheet method is the 

image-processing method that needs big computational complexity, we should develop use-

ful new techniques with which image-restoration can be performed almost automatically.  

An essential problem in the zero-sheet method is how we separate zero-sheets of blur-

images from those of original images.  At present, a versatile method for this has not yet 

been established.  In this work, we developed some useful techniques for the practical use 

of the zero-sheet method.

In Sec. 2 we give an overview of the basic algorithm of the Bates’ blind deconvolution.  In 

Sec. 3 we demonstrate the Bates’ blind deconvolution using a model image.  This is also a 

test of the Bates’ method.  In Sec. 4, we present some new techniques that we developed in 

the present work.  We show how they are useful for the Bates’ blind deconvolution.  In Sec. 

5, we present our result of the image-restoration of an actual PET image.  A summary is 

given in Sec. 6.

2. Overview of the Bates’ blind deconvolution

In this section we give an overview of the basic idea of Bates’ blind decovolution.  This 

method is based on the so-called zero-value problem.  This method is regarded as an exten-

sion of the one-dimensional signal conditioning with zero-values of signals.

An observed image of the size M' × N' is expressed by a real function N' is expressed by a real function N' g(x, y), where x

and y are coordinates of the image, i.e., x = 0, 1, 2,…, M' – 1 and y = 0, 1, 2,…, N' – 1.  The 

z-transform of g(x, y) is written as
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G(u, v) =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)uxvy, (2.1)

where u and v are complex variables.  We call the function G(u, v) a representation of the 

observed image in u – v space (z-space).  If we take u and v as u = e–2pix/M' and /M' and /M' v = e–2pih/N', 

Eq. (2.1) is just the two-dimensional Fourier transform.  In this sense, the z-transform is a 

generalization of the Fourier transform.  Suppose that the observed image g(x, y) is given 

as a convolution of an original image f(f(f x, y) of the size M × N and a blur-image N and a blur-image N h(x, y) of 

the size m × n.  The blur-image h(x, y) deteriorates the original image f(f(f x, y).  In this situa-

tion, G(u, v) can be written as

G(u, v) =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)uxvy = F(F(F u, v)H(H(H u, v), (2.2)

where

F(F(F u, v) =
1
―
MN

M – 1

∑
x = 0

N – 1

∑
y = 0

f(f(f x, y)uxvy (2.3)

and

H(H(H u, v) =
1
―
mn

m – 1

∑
x = 0

n – 1

∑
y = 0

h(x, y)uxvy. (2.4)

Note that M' = M + m – 1 and N' = N + n – 1.  Thus, in u – v space the observed image is 

given as a product of the original image and the blur-image.

We express the complex variable u in Eq. (2.1) as

u = ru exp(ifu), (2.5)

where ru and fu are real parameters (r are real parameters (r are real parameters ( u ≠ 0, 0 ≤ fu ≤ 2p).  For a fixed p).  For a fixed p ru and a fu, G(u = rue
ifu, v) 

of Eq. (2.1) is a polynomial of v.  Therefore, we can express G(u = rue
ifu, v) as a factorization 

with the roots (zero-values) bk(k = 1, …, N'') of N'') of N'' G(u = rue
ifu, v) = 0, i.e.,

G(u = rue
ifu, v) = 

1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)(r)(r)( ue
ifu)xvy = Au 

N''

∏
k=1

(v – bk),  (N'' ≤ N' – 1), (2.6)

where bk = bk(r(r( u, fu) and AmAmA  = AmAmA (r(r( u, fu).  Similarly, if we express v as

v = rv exp(ifv), (2.7)

then G of Eq. (2.1) is also written as

G(u, v = rve
ifv) =

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)ux(r(r( ve
ifv)y = Av 

M''

∏
k=1

(v – gk),  (M'' ≤ M' – 1) (2.8)

where gk = gk(r(r( v, fv) (k = 1,…, M'') are the roots of M'') are the roots of M'' G(u, v = rve
ifv) = 0 and Av = Av(r(r( v, fv).  

Thus, it seems that in u – v space the observed image G can be reconstructed by either 

zero-values bk’s or gk’s.  However, the factors Au and Av cannot be determined by zero-values 

bk or gk.  To reconstruct the observed image by using bk’s or gk’s, we have to adjust the con-
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stants Au and Av using both Eqs. (2.6) and (2.8).

As seen from Eq. (2.2), the factors v – bk (k = 1,…, N'') in Eq. (2.6) consist of those of N'') in Eq. (2.6) consist of those of N'' F(F(F u 

= rue
ifu, v) and H(H(H u = rue

ifu, v).  Therefore, by judging which factors of v – bk (k = 1, …, N'') N'') N''

in Eq. (2.6) belong to those of H(H(H u = rue
ifu, v), in u – v space we can get rid of blur-images 

from the observed image.  This can be performed by classifying bk’s into some groups.  The 

classification of bk’s is done by changing the parameters ru and fu.  When we vary fu from 

0 to 2p for a fixed p for a fixed p ru, bk’s compose some closed curves.  In this way, bk’s are classified into 

some groups.  However, there is no unique way to judge the zero-values of the blur-images.  

Small image elements can be the candidates for the blur-images.

We explain this situation with a toy image.  The toy image is defined by

g(3,0) g(3,1) g(3,2) g(3,3)

 = 

f 0 0 0

 , (2.9)
g(2,0) g(2,1) g(2,2) g(2,3) 0 0 f 0

g(1,0) g(1,1) g(1,2) g(1,3) 0 f 0 0

g(0,0) g(0,1) g(0,2) g(0,3) 0 0 0 f

where 0 < f ≤ 255.  Figure 2.1 (a) shows the toy image with f = 255.  Note that the origin of 

this data is the left bottom.  The polynomial G(u = rue
ifu, v) of v for this image is the third 

order polynomial.  The zero-values bk’s of G(u = rue
ifu, v) are b1 = –r = –r = – 2

ue
2ifu, b2 = √


√


√r√r√ uei(fu+p)p)p /2 and 

b3 = √


√


√r√r√ uei(fu+3p)p)p /2.  Note that the bk’s do not contain f.  When f.  When f fu is varied form 0 to 2p for a p for a p
fixed ru, b1 forms a circle alone, on the other hand b2 and b3 form a circle as a group.  In this 

sense, b1, b2 and b3 are classified into two groups { b1 } and { b2, b3 }.  It is instructive to rep-

resent the three zero-values on complex plane.  As seen in Fig. 2.1 (b), for ru = 1 bk’s are all 

degenerated on a unit circle.  On the other hand, for ru ≠ 1 they are split into two circles, as 

seen in Fig. 2.1 (c).  In this simple example, such degeneration of bseen in Fig. 2.1 (c).  In this simple example, such degeneration of bseen in Fig. 2.1 (c).  In this simple example, such degeneration of k’s for ru = 1 causes no 

problem because bk’s are given analytically and the classification of bk’s into groups can be 

done with the analytical form of bk’s.  In actual images, however, zero-values of G(u = rue
ifu, v) 

are obtained only numerically because the sizes of the images are large.  In such actual 

images of large sizes, for ru = 1 the zero-values are generally overcrowded to the neighbor-

hood of a unit circle on complex plane.  This situation makes the classification of zero-

values difficult.  Therefore, in the deconvolution of actual images we have to take as ru ≠ 1 

to classify the zero-values into groups correctly.  In the deconvolution of actual images it is 

Fig. 2.1 (a) A toy model-image of the size 4 × 4, (b) The zero-sheet of the toy image for ru = 1, (c) The 
zero-sheet of the toy image for ru > 1.
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very important how we choose an optimal value of ru.  In fact this is a very difficult prob-

lem because if we take ru to be very different from unity we need multi-bytes computation 

in obtaining the zero-sheet.  We will discuss this delicate point in detail in the next section.

Once we determine F(F(F u, v) in u – v space by removing H(H(H u, v), we have to transform F(F(F u, v) 

to f(f(f x, y) to visualize the restored image.  This is performed by the inverse Fourier trans-

form.  As we mentioned below Eq. (2.1), if we take u and v as u = e–2pix/x/x M'/M'/  and M' and M' v = e–2pih/N', we 

have

F(F(F x, h) = 
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

f(f(f x, y)r)r) x
u r

y
v exp(–2(–2( pi

xxxxx
―
M' )exp(–2(–2( pi

hy
―
N' ). (2.10)

This is just the two-dimensional discrete Fourier transform of f(f(f x, y)r)r) x
u r

y
v.  Therefore, the 

restored image in x – y space is given, by the inverse Fourier transform, as

f(f(f x, y)=r)=r)= –x
u r

–y
v

M' – 1

∑
x = 0

N' – 1

∑
h = 0

F(F(F x, h)exp(2pi
xxxxx
―
M' )exp(2pi

hy
―
N' ) . (2.11)

Note that the size of the restored image is taken as M' × N', which is the same as that 

of the observed image.  As seen in Eq. (2.2) the size of the restored image f(f(f x, y) must 

be smaller than that of the observed image.  However, in our analysis in the following 

sections, we reconstruct restored images in the same matrix space as that of the observed 

image.

3. A test of the Bates’ blind deconvolution with a model image

In Sec. 2 we have given an overview of the basic idea of the Bates’ blind deconvolution.  

Before we apply the Bates’ blind deconvolution to the restoration of PET images we tested 

it with a model image.  In this section, we present the result of the test.  This is also a 

demonstration of the Bates’ method.  Figures 3.1 (a) and 3.1 (b) show an original image 

and a blur-image, respectively.  Their sizes are 32 × 32 and 4 × 4, respectively.  Note that 

the blur-image is the same one as the toy-image that we have used in explaining the basic 

structure of zero-sheets.  Figure 3.2 shows the deteriorated image that was obtained by 

the convolution of the original and blur images.  With this deteriorated image we tested 

the algorithm of the Bates’ blind deconvolution.  As we explained in Sec. 2, in order to clas-

sify zero-values we have to choose an optimal value of the parameter r (in this test we take 

as ru = rv = r).  Figure 3.3 exhibits zero-sheets of v for various values of r.  As seen in the 

figure, for r = 1 zero-values bk’s are overcrowded to the surroundings of a unit circle.  We 

mentioned this situation in Sec. 2.  In order to classify bk’s well, it seems better to take r

to be different from unity as much as possible.  However, this causes another problem due 

to the factor rx+y+y+  in the polynomial of Eq. (2.6).  The sizes of actual images are at least an 

order of 100 × 100.  For such image sizes, the maximal power of r is of the order of 198.  

For r = 1.5, this gives 1.5198 ≈ 1035.  This causes loss of information of the image.  We will 

discuss this severe problem in the image processing again in the next section.  In the pres-
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ent analysis we calculate with the precision of forty digits, to save the processing time.  

Therefore, r = 1.3 or r = 0.7 is nearly the limit for no loss of information of the image.  In 

this test we adopt r = 1.3 eventually.

In Fig. 3.4 we show the fine structure of the zero-sheet of v for r = 1.3.  The size of the 

model image is 35 × 35 (note M' + m – 1 = 32 + 4 – 1 = 35).  The number of zero-values 

bk’s of the polynomial G(u = rue
ifu, v) is 34 including degenerate zero-values.  In Fig. 3.4 we 

plotted bk’s for every Df = 2p/986.  The total number of points plotted on the complex plane p/986.  The total number of points plotted on the complex plane p

is 33524.  In order to classify bk’s into groups we have to connect each bk from f = 0 to 2p

correctly.  In the present case, it is not so difficult to connect each bk.  As the model image 

shown in Fig. 3.3 is small and simple enough, the zero-sheet is very simple.  If we take 

Df small enough we can connect each bk easily and classify bk’s into some groups correctly.  

For actual images, however, this is an extremely tough work.  To make it possible to con-

nect each bk of any complicated zero-sheets of actual images, we developed a technical 

Fig. 3.1 (a) A model image (pot) of the size 32 × 32.  (b) A blur-image of the size 4 × 4.

Fig. 3.2 The deteriorated image by convolution of the bur-image of Fig. 3.1 (b).  The size of the image 
is 35 × 35.
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Fig. 3.3 The zero-sheets of v of the model image of Fig. 3.2.
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method.  We discuss this in detail in Sec. 4.  In the present demonstration we connected 

each bk from f = 0 to 2p by taking p by taking p Df small enough.  Figure 3.5 shows the connected bk’s.  

The 34 bk’s are connected correctly.  As seen at a glance, b1, b17 and b18 belong to those of 

the blur-image of the size 4 × 4 (see Fig. 2.1).  Figure 3.5 exhibits the zero-sheet where 

zero-sheets of the blur-image b1, b17 and b18 have been removed.

As we have explained in Sec. 2, in order to reconstruct the original image we have to re-

peat the same processing for u.  Figure 3.7 (a) shows the zero-sheet of u, which consists of 

34 zero-values gk’s of u.  The zero-sheet of u for the blur-image should be the same as that 

of v because the blur-image of this case is symmetric for x and x and x y.  Figure 3.7 (b) shows the 

zero-sheet of u, where the zero-sheet of the blur-image has been removed.

Now we can reconstruct an image from the zero-sheets shown in Figs. 3.6 and 3.7 (b).  

Figure 3.8 (a) shows F(F(F x, h) of the image reconstructed from the zero-sheet of v shown in 

Fig. 3.6.  Figure 3.8 (b) shows F(F(F x, h) of the image reconstructed from the zero-sheet of u

shown in Fig. 3.7 (b).  Figure 3.9 exhibits F(F(F x, h) that was obtained by readjusting the two 

F(F(F x, h)’s shown in Figs. 3.8 (a) and 3.8 (b).  A restored image in x – y space is obtained by 

the inverse Fourier transform of F(F(F x, h) shown in Fig. 3.9.  Figure 3.10 (a) shows f(f(f x, y)r)r) x + y

obtained from F(F(F x, h) of Fig. 3.9 by the inverse Fourier transform.  Figure 3.10 (b) is the re-

stored image f(f(f x, y).  As seen in the figure, the restored image is the same as the original-

image (pot) of Fig. 3.1 (a).  Note that the restored image of the size 32 × 32 is embedded in 

35 × 35 matrix space that is the space of the deteriorated image of Fig. 3.2.  The demon-

stration presented in this section shows that the Bates’ zero-sheet method seems to work 

well for this kind of simple and small image.

Fig. 3.4　The fine structure of the zero-sheet of v for r = 1.3.
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Fig. 3.5 Connected zero-values bk’s of v.

Fig. 3.6　The zero-sheet of v, where the zero-sheets of the blur-image b1, b17 and b18 were removed.
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Fig. 3.7 (a) The zero-sheet of u.  (b) The zero-sheet of u where the zero-sheet of the blur was removed.

Fig. 3.8 (a) F(F(F x, h) of the image that was reconstructed from the zero-sheet of v shown in Fig3.6.  (b) 
F(F(F x, h) of the image that was reconstructed from the zero-sheet of u shown in Fig. 3.7 (b).

Fig. 3.9 F(F(F x, h) obtained by readjusting F(F(F x, h)’s of Figs. 3.8 (a) and 3.8 (b).
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4. Technical tools for the Bates’ zero-sheet method

4.1 Connection method of zero-values by a differential equation

In the preceding section, we demonstrated the image processing by the Bates’ Zero-sheet 

method and showed that it works very well for a simple and small image.  Our purpose is 

to apply the zero-sheet method to restoring actual PET images.  As mentioned in the pre-

ceding section, we obtain zero-values bk(gk) by solving G(u = rue
ifu, v) = 0 (G(u, v = rve

ifv) = 0) 

for every Dfu (Df (Df ( v) in a desired accuracy.  In order to judge zero-sheets of blur-images, first 

we have to connect each bk(gk) from Dfu (Df (Df ( v) = 0 to 2p correctly.  In the demonstration that p correctly.  In the demonstration that p

we presented in Sec. 3 the sample image was simple and small enough, and the zero-sheet 

of the sample image was very simple.  Accordingly, we could connect the zero-values by 

taking Df small enough.  However, as we illustrate in the following, for actual PET images 

it is extremely difficult to connect each zero-values from f = 0 to 2p because their zero-p because their zero-p

sheets are very complicated.

Fig. 4.1.1 shows a PET image that we downloaded from the web site http://www.rad.kumc.edu/

nucmed/clinical/pet_lung2.htm.  It represents a PET image of a cross section of a human 

body.  Note that in Fig. 4.1.1 we reversed the brightness.  Figure 4.1.2 shows the zero-sheet of 

v for the PET image, where 67 bk’s calculated with ru = 1.1 are plotted for every Dfu = 2p/670.  p/670.  p

Since ru is very close to unity, the zero-values are overcrowded in the neighborhood of a 

unit circle.  We mentioned this situation in Sec. 3.  Further, although the PET image of 

Fig. 4.1.1 looks rather simple compared to the model image (pot) of Fig. 3.2, the zero-sheet 

for the PET image is more complicated than that of the model image (see Fig. 3.4).

As we have just illustrated above, in actual images their zero-sheets have very com-

plicated structures in general.  Therefore, we need a technical tool to connect each bk(gk) 

calculated for every Dfu(Df(Df( v).  In the present work, we developed a method for connecting 

each bkbkb (gk) by a differential equation.  The algorithm of the method is illustrated in Fig. 4.1.3.  

The zero-values bk(gk) of the polynomials G(u = rue
ifu, v) (G = (u, v = rve

ifv)) are calculated 

in a desired accuracy, which must be enough accuracy not to lose information of given 

Fig. 3.10 (a) f(f(f x, y)r)r) x + y obtained from F(F(F x, h) of Fig. 3.9.  (b) The restored image f(f(f x, y).
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images.  In this work we use Mathematica to calculate bk’s (gk’s) in a desired accuracy.  

Small circles in Fig. 4.1.3 represent the bk’s (gk’s) of G(u = rue
ifu, v) (G(u, v = rve

ifv)) calcu-

lated for every Dfu(Df(Df( v).  In this method, we do not have to take Dfu(Df(Df( v) very small to con-

nect each bk(gk).  However, we have to take Dfu(Df(Df( v) at least to be 2p/p/p M' /M' / (2p/p/p N') because we N') because we N'

need F(F(F u = rue
ifu, v) and F(F(F u, v = rve

ifv) at those points for the inverse Fourier transform.  

Once we obtain bk’s (gk’s) in a desired accuracy for every Dfu(Df(Df( v), we connect bk(r(r( u, lDflDfl u) and 

bk(r(r( u, (l + 1)Dfu) (l = 0,1,…, M' – 1) (gk(r(r( v, lDflDfl v) and gk(r(r( v, (l + 1)Df) (l = 0, 1, …, N' – 1)) by 

solving a differential equation.  Computational errors in solving the differential equation 

are reset if bk(r(r( u, lDflDfl u) and bk(r(r( u, (l + 1)Dfu) ((gk(r(r( v, lDflDfl v) and gk(r(r( v, (l + 1)Df)) are connected 

correctly.

The differential equation for bk(r(r( u, fu) (k = 1, 2, …, N'') with respect to N'') with respect to N'' fu at a given ru = 

r0 is written as

Fig. 4.1.1 A PET image of cross section of a human body that was downloaded from the web site 
http://www.rad.kumc.edu/nucmed/clinical/pet_lung2.htm. Note that we reversed the brightness.

Fig. 4.1.2　The zero-sheet of variable v for the PET image of Fig. 4.1.1, where ru is taken as 1.1.
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dbdbd k(r(r( u = r0, fu)―
dfu |ru= r0

= – ―|
ru = r0

,
( ∂G
―
∂fu )

( ∂G
―
∂b∂b∂ k )

(4.1.1)

where

∂G
―
∂fu

 = 
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)ix(r(r( ue
ifu)xbxbx

k
y (4.1.2)

and

∂G
―
∂b∂b∂ k

 = 
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0
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The differential equation (4.1.1) is actually simultaneous equations of its real and imagi-

nary parts.  The differential equation for gk(r(r( v, fv) (k = 1, 2, …, M'') is obtained by M'') is obtained by M'' bk → 
gk, ru → rv, fu → fv and x ↔ y in Eqs. (4.1.1)–(4.1.3), but g(x, y) must be left as just as it is.  

The differential equation is powerful.  To test the power we tried to connect each bk shown 

in Fig. 4.1.2.  Figure 4.1.4 is the result.  As seen in the figure, 67 bk’s are well classified 

into four closed curves.  Thus, the connection method by the differential equation (4.1.1) 

works very well even for the overcrowded zero-sheet such as that shown in Fig. 4.1.2.

Fig. 4.1.3 The algorithm to connect each bk(gk).  The f means fu or fv.
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4.2 Conditional expression for judging a blur element of a small size

In the preceding section we have presented a powerful tool for connecting any zero-

values that compose complicated zero-sheets.  By connecting zero-values with the tool we 

can classify the zero-values into groups.  By examining the classified zero-values we can 

judge which zero-values are those of blurs.  On the other hand, if it is possible to judge any 

blurs without connecting and classifying zero-values, it is very significant for the Bates’ 

blind deconvolution.  We examined this problem and found that in principle it is possible 

to derive a conditional expression by which we can judge a blur without classifying the 

zero-values.  The conditional expression we found is for blur-images of the size 2 × 2.  For 

each bk (k = 0, 1,…, N' – 1) of N' – 1) of N' G(u = rue
ifu, v) the conditional expression is expressed as

(dbdbd k(r(r( u, fu = fi)―
drdrd u

)( d3b3b3
k(r(r( u, fu = fi)―

drdrd u
3 ) = 3

―
2 (d2b2b2

k(r(r( u, fu = fi)―
drdrd u

2 )
2

, (4.2.1)

where the derivatives of bk with respect to ru are given analytically as

Fig. 4.1.4　The zero-values bk’s that were classified by the differential equation (4.1.1).
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dbdbd k(r(r( u, fu = fi)―
drdrd u

= – ―|
fu = fi

,
( ∂G
―
∂r∂r∂ u )

( ∂G
―
∂b∂b∂ k )

(4.2.2)

d2b2b2
k(r(r( u, fu = fi)―

drdrd u
2 = – 

1
― { ∂2G
―
∂r∂r∂ u

2 + 2
∂2G
―
∂r∂r∂ u∂b∂b∂ k

( dbdbd k―
drdrd u

) + 
∂2G
―
∂b∂b∂ k

2 ( dbdbd k―
drdrd u

)2}|f=fi

,

( ∂G
―
∂b∂b∂ k )

(4.2.3)

d3b3b3
k(r(r( u, fu = fi)―

drdrd u
3 = – 

1
― { ∂3G
―
∂r∂r∂ u

3 + 3
∂3G
―
∂r∂r∂ u

2∂b∂b∂ k
( dbdbd k―

drdrd u
) + 3

∂3G
―
∂r∂r∂ u∂b∂b∂ k

2 ( dbdbd k―
drdrd u

)2

( ∂G
―
∂b∂b∂ k )

+ 3
∂2G
―
∂r∂r∂ u∂b∂b∂ k

( d2b2b2
k―

drdrd u
2 ) + 3 

∂2G
―
∂b∂b∂ k

2 ( dbdbd k―
drdrd u

)( d2b2b2
k―

drdrd u
2 ) +  

∂3G
―
∂b∂b∂ k

3 ( dbdbd k―
drdrd u

)3}|fu = fi

, (4.2.4)

with

∂G
―
∂r∂r∂ u

=
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)xrxrx u
x – 1(eifu)xbxbx

k
y, (4.2.5)

∂G
―
∂b∂b∂ k

 =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)(r)(r)( ue
ifu)xybyby k

y – 1, (4.2.6)

∂2G
―
∂r∂r∂ u

2  =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)x(x – 1)r– 1)r– 1) u
x – 2(eifu)xbxbx

k
y, (4.2.7)

∂2G
―
∂r∂r∂ u∂b∂b∂ k

 =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)xrxrx u
x – 1(eifu)xybyby k

y – 1, (4.2.8)

∂2G
―
∂b∂b∂ k

2  =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)(r)(r)( ue
ifu)xy(y (y ( – 1)b– 1)b– 1) k

y – 2, (4.2.9)

∂3G
―
∂r∂r∂ u

3 =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)x(x – 1)(x – 2)r– 2)r– 2) u
x – 3(eifu)xbxbx

k
y, (4.2.10)

∂3G
―
∂r∂r∂ k

2∂b∂b∂ k
=

1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)x(x – 1)r– 1)r– 1) u
x – 2(eifu)xybyby k

y – 1, (4.2.11)

∂3G
―
∂r∂r∂ u∂b∂b∂ k

2  =
1
―
M'N'

M' – 1

∑
x = 0

N' – 1

∑
y = 0

g(x, y)xrxrx u
x – 1(eifu)xy(y (y ( – 1)b– 1)b– 1) k

y – 2, (4.2.12)



90 Enhancing PET Images by Means of Bates’ Blind Deconvolution
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The conditional expression (4.2.1) is a relation among the first, second and third deriva-

tives of bk(r(r( u, fu)(k = 1, …, N' – 1) with respect to ru.  The expression is very elegant in the 

sense that everything needed in evaluating the expression is given analytically.  In order 

to judge whether or not a bk is a zero-value of a blur-image of the size 2 × 2, we only sub-

stitute the numerical value of bk into the conditional expression (4.2.1).  Further, we can 

evaluate the expression for any ru and fu.  The conditional expression for gk(r(r( v, fv)(k = 1, …, 

M' – 1) is obtained by bk → gk, ru → rv, fu → fv and x ↔ x ↔ x y in Eqs. (4.2.1)–(4.2.13), but g(x, y) 

must be left as just as it is.

We test the utility of the conditional expression (4.2.1) using a test image shown in Fig. 

4.2.1.  The image is similar to that of Fig. 3.2 that we used in demonstrating the Bates’ 

blind deconvolution.  In the image of Fig. 3.2 a blur-image of the size 4 × 4 was convoluted.  

On the other hand, in the image of Fig. 4.2.1 a blur image of the size 2 × 2 is convoluted.  

The zero-sheets of v and u for the image of Fig. 4.2.1 are shown in Fig. 4.2.2.  We test how 

the conditional expression (4.1.1) works well for the zero-values shown in Fig. 4.2.2.  As we 

mentioned above, the expression (4.1.1) can be evaluated for any ru and fu.  In the present 

test we evaluate it for ru = 1.3 and fu = 0.  Figure 4.2.3 (a) shows the result of the evalua-

tion.  As seen in the figure, b5 satisfies the conditional expression of Eq. (4.2.1).  Figure 4.2.3 

(b) shows the zero-sheet of b5.  The zero-sheet shows a typical shape of a blur-image of the 

size 2 × 2.  Similarly, Fig. 4.2.4 (a) shows the result of the evaluation of the conditional 

expression for gk.  In this case, g1 satisfies the conditional expression for gk.  Figure 4.2.4 (b) 

is the zero-sheet of g1.

In this way, we can judge that b5 and g1 are the zero-values of v and u of a blur-image 

of the size 2 × 2.  In Fig. 4.2.5 we show the zero-sheets where the zero-sheets of the blur-

image have been removed.

Fig. 4.2.1 A test image that was deteriorated by convolution of a blur-image of the size 2 × 2.  The 
size of the image is 33 × 33.
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Fig. 4.2.2 (a) The zero-sheet of v for the image shown in Fig. 4.2.1.  (b) The zero-sheet of u for the 
image shown in Fig. 4.2.1.  The parameters ru and rv are taken as ru = rv = 1.3.

Fig. 4.2.3 (a) Evaluation of the conditional expression (4.2.1) by bk, k = 1, …, 33.  (b) The zero-sheet 
of b5, where ru is taken as 1.3.

Fig. 4.2.4 (a) Evaluation of the conditional expression for gk, k = 1, …, 33.  (b) The zero-sheet of g1, rv

is taken as 1.3.
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Figure 4.2.6 is the restored image that was reconstructed with the zero-sheets shown in 

Figs. 4.2.5 (a) and (b).  The image is the same as that of Fig. 3.1.  This result shows that 

we could judge a blur-image of the size 2 × 2 correctly by using the conditional expression.

As we have shown, the conditional expression of Eq. (4.2.1) is very useful and power-

ful tool for the Bates’ blind deconvolution.  Using such a conditional expression we do not 

have to classify the zero-values before we judge zero-values of blurs.  We only connect zero-

values of blurs.  At present we have such a conditional expression only for blur-image of 

the size 2 × 2.  It is very significant to find such conditional expressions for other blurs.

5. Enhancing a PET image by means of the Bates’ blind deconvolution

We have tried deconvolution for a variety of PET images by means of the Bates’ blind 

deconvolution.  Eventually, we could succeed in finding a blur-image in a PET image.   

We emphasize that the result presented in this section is an invaluable result that was 

Fig. 4.2.5 (a) The zero-sheet of v, where the zero-sheet of b5 was removed.  (b) The zero-sheet of u, 
where the zero-sheet of g1 was removed.

Fig. 4.2.6 The restored image with the zero-sheets of Fig. 4.2.5.
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achieved through tough work.

Figure 5.1 is a PET image that we downloaded from the web site http://www.cc.nih.gov/

pet/images.html.  It represents a set of images of human brains.  Figure 5.2 exhibits an 

image that was extracted from Fig. 5.1.  The extracted part is indicated by a white box in 

Fig. 5.1.  The extracted image seems to be senile somehow.  Our aim is to clarify whether 

or not any blur-images are convoluted in the extracted image.  The size of the extracted 

image is 85 × 85, which is rather small.  Therefore, it is expected that the image can be 

processed in a practical process time.  Here, we want to mention a problem caused by 

extracting an image from a whole image.  If the background of an extracted image is black, 

Fig. 5.1 PET images downloaded from the web site http://www.cc.nih.gov/pet/images.html.

Fig. 5.2 A PET image of a human brain that was extracted from Fig. 5.1.  The size of the image is 85 × 85.
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no problem is caused.  However, if the background of an extracted image is not black, a 

special technique is needed in extracting the image.  In fact this is a very difficult problem.  

In the present case, the background of the extracted image looks black.  However, actually 

it is not black but thick gray.  This causes a severe problem in the deconvolution of the 

extracted image.  We will return to this problem later again.  Anyhow, let us now try 

deconvolution of the extracted image.

First we search optimal values for ru and rv.  Figure 5.3 shows the zero-sheets of v

Fig. 5.3 The Zero-sheets of v for the extracted image of Fig. 5.2.  The 84 bk’s are plotted for every Dfu

= 2p/425.p/425.p
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for various values of ru.  Figure 5.4 shows those for u for various rv.  The number of the 

zero-values is 84 both for v and u.  In each zero-sheet shown in Figs. 5.3 and 5.4, the zero-

values are plotted for every Dfu = 2p/425 or p/425 or p Dfv = 2p/425.  We searched appropriate values p/425.  We searched appropriate values p

for ru and rv by changing them from 0.8 to 1.2.  As we have mentioned before, in order to 

Fig. 5.4 The zero-sheets of u for the extracted image of Fig. 5.2.  The 84 gk’s are plotted for every Dfv

= 2p/425.p/425.p
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classify the zero-values well, we have to take ru and rv very different from unity.  How-

ever, on the other hand, if we take ru and rv very different from unity, we need multi-bytes 

computation not to lose information of the image.  Such multi-bytes computation causes 

explosive increase of the image processing-time.  Eventually, in order to process the image 

in a practical processing-time we have to take ru and rv to be the vicinity of unity.  In the 

present analysis we take rv = ru = 1.2 and rv = ru = 0.8.

First, we show the result of our analysis with rv = ru = 1.2.  Figure 5.5 exhibits the fine 

structure of the zero-sheet of v for ru = 1.2.  We first tried to find blur-elements of the size 

2 × 2 by applying the conditional expression (4.2.1) that we presented in Sec. 4.  How-

ever, we could not find any blur of the size 2 × 2.  Then, we connected each bk from fu = 0 to 

2p and classified p and classified p bk’s into groups.  In connecting each bk we used the differential equation 

(4.1.1) that we presented in Sec. 4.  In this case, the 84 bk’s were classified into 6 groups.  

Figure 5.6 shows the classified bk’s.

The results of the classification of bk’s shown in Fig. 5.6 imply that the size of x-space 

of the smallest image is 3.  As we mentioned above, we found no blur of the size 2 × 2 by 

using the conditional expression of Eq. (4.2.1).  This is consistent with the results of the 

classi fication of bk’s.  Next, we judge zero-sheets of blurs.  A key point in judging burs 

would be the size of image elements.  If an image element is small enough, it may be a 

candidate for blurs.  In Fig. 5.6, Group-4, -5 and -6 represent small images.  Therefore, we 

tried deconvolution by regarding those three groups as the candidates for blurs.  We recon-

structed images by removing each one of the three candidates.  The results are shown in 

Fig. 5.7.  The reconstructed images are quite different from the observed image of Fig. 5.2.  

We further tried to reconstruct images by removing two of the three candidates.  However, 

we could not obtain any plausible images.  Thus, zero-values of Group-4, -5 and -6 cannot 

be regarded as those of blur-images.

Fig. 5.5 The fine structure of the zero-sheet of v for ru = 1.2.
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Fig. 5.6　The classified bk’s.  Group-1 consists of 20 bk’s.  Group-2 consists of 32 bk’s.  Group-3 consists 
of 22 bk’s.  Group-4 consists of 5 bk’s.  Group-5 consists of 3 bk’s.  Group-6 consists of 2 bk’s.
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Next, we examine the zero-sheets of u.  Figure 5.8 exhibits the fine structure of the 

zero-sheet of u for rv = 1.2.  We could classify 84 gk’s into four groups by connecting each 

gk from fv=0 to 2p.  Figure 5.9 shows the results.  The results of the classification indi-

cate that the smallest image element is of Group-4 that consists of 7 gk’s.  Therefore, it 

is expected that a blur must be an image of the size 8 × 8 or larger.  Anyhow, we tried to 

reconstruct an image by removing gk’s of Group-4.  Figure 5.10 shows the result.  The re-

constructed image is quite different from the observed image of Fig. 5.2.  Eventually, we 

failed in restoring the image of Fig. 5.2 with the zero-sheets for ru = rv = 1.2.  There are two 

reasons for this: (1) the values of rv and ru are not appropriate, (2) any blurs are not origi-

nally convoluted.

Then, we reanalyzed with ru = rv = 0.8.  Figure 5.11 shows the fine structure of the zero-

sheet of v for ru = 0.8.  Figure 5.12 exhibits bk’s classified by the differential equation (4.1.1).  

The 84 bk’s are classified into 6 groups well.

Fig. 5.7 (a) The image reconstructed by removing bk’s of Group-6.  (b) The image reconstructed by 
removing bk’s of Group-5.  (c) The image reconstructed by removing bk’s of Group-4.

Fig. 5.8 The fine structure of the zero-sheet of u for rv = 1.2.
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Fig. 5.9 The classified gk’s of u with rv = 1.2.  Group-1 consists of 41 gk’s.  Group-2 consists of 18 gk’s.  
Group-3 consists of 18 gk’s.  Group-4 consists of 7 gk’s.

Fig. 5.10 The image reconstructed by removing gk’s of Group-4.



100 Enhancing PET Images by Means of Bates’ Blind Deconvolution

As seen in the figure, the group-4, -5 and -6 represent small image-elements.  In Figure 

5.13 we show images that we reconstructed by removing bk’s of each one of the Group-4, -5 

and -6.  They are all quite different from the observed image of Fig. 5.2, as in the case of ru

= 1.2.  We also tried to reconstruct images by removing two of the three groups.  However, 

we could not obtain any plausible images, as in the case of ru = 1.2.

Next we examine the zero-sheet of u.  Figure 5.14 exhibits the fine structure of the zero-

sheet of u for rv = 0.8.  The classified gk’s of u are shown in Fig. 5.15.  In this case, 84 gk’s 

are classified into 6 groups by the differential equation (4.1.1).

As seen in Fig. 5.15, Group-5 and -6 imply the smallest image elements.  We reconstruct-

ed an image by removing the zero-values of Group-6.  Figure 5.16 shows the reconstructed 

image.  The reconstructed image is very similar to the observed image of Fig. 5.2.  In the 

reconstructed image the light and shade of the image looks enhanced compared to those of 

the original image.  Figure 5.17 (a) exhibits the difference in the brightness between the 

enhanced image and the observed image.  In Fig. 5.17 (b), the difference in the brightness 

of the 44th row is shown.  It is noted that in some parts the difference in the brightness is 

amplified.  Thus, we are convinced that a blur was surely excluded and the observed image 

is restored certainly.

Although we are convinced that the image of Fig. 5.16 is correctly restored, we are anx-

ious somehow about the irregularity of the restored image.  We obtained the observed im-

age of Fig. 5.2 by extracting it from the whole image of Fig. 5.1.  The background of the ex-

tracted image looks black.  However, as we mentioned before, in fact the background is not 

black but thick gray.  We guess that this causes such irregularity in the restored image.  

Then, we made a modification on the extracted image of Fig. 5.2.  We applied a suppress 

function (or window function) to the extracted image.  The suppress function adjusts 

smoothly the brightness of the image to zero in the vicinity of the edge of the extracted 

Fig. 5.11 The fine structure of the zero-sheet of v for ru = 0.8.
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Fig. 5.12 The zero-values bk’s classified with ru = 0.8.  Group-1 consists of 31 bk’s.  Group-2 consists 
of 23 bk’s.  Group-3 consists of 22 bk’s.  Group-4 consists of 2 bk’s.  Group-5 consists of 4 bk’s.  Group-6 
consists of 2 bk’s.
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image.  We carried out the image processing for such a modified image, in the same way 

as we did for the extracted image.  We show the result in Fig. 5.18 (a).  Apparently, the 

irregularity seen in Fig. 5.16 has disappeared in the restored image of Fig. 5.18 (a).  Figure 

5.18 (b) shows the difference in the brightness of the 44th row between the restored and 

the original images.  In some parts the difference in the brightness is certainly amplified.  

The result of this analysis indicates that for the blind deconvolution of PET images it is 

important to establish a versatile technique for extracting an image from a whole image.

To the end of this section, we mention the blur image that we removed from the observed 

image.  We could find a blur-element in u-space.  The blur-element consists of two zero-

values.  This means that the size of the blur-element in x-space is three.  The zero-sheet of 

the blur-element in u-space is shown in Fig. 5.15, i.e., Group-6.  The zero-values of Group-6 

have apparently fv dependences.  This implies that the size of the blur-element in y-space 

is larger than two.  If the size of the blur-element in y-space is one, then the zero-values of 

Fig. 5.13 (a) The image reconstructed by removing bk’s of Group-4.  (b) The image reconstructed by 
removing bk’s of Group-5.  (c) The image reconstructed by removing bk’s of Group-6.

Fig. 5.14 The fine structure of the zero-sheet of u for rv = 0.8.
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Fig. 5.15 The classified gk’s for rv = 0.8.  Group-1 consists of 52 gk’s.  Group-2 consists of 13 gk’s.  
Group-3 consists of 8 gk’s.  Group-4 consists of 7 gk’s.  Group-5 consists of 2 gk’s.  Group-6 consists of 2 gk’s.
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Fig. 5.16 An image reconstructed by removing gk’s of Group-6.

Fig. 5.17 (a) The difference in the brightness between the enhanced and the observed images.  (b) 
The brightness of the 44th row that was extracted from Fig. 5.15 (a).  The red and black lines indicate 
the brightness of the enhanced image and the observed image, respectively.

Fig. 5.18 (a) The image restored from the extracted image to which a suppress function was applied.  
(b) The red and black lines respectively indicate the brightness of the restored image and extracted 
image to which a suppress function was applied.
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u do not have any fv dependence.  Hence, we can guess that the blur-element is of 3 × n (n 

≥ 2).  However, we did not find any blur-element in v-space.  This is a puzzle.  At present, 

we do not have any answer to this inconsistency.  We are now reanalyzing this problem.

6. Summary

We examined Bates’ blind deconvolution to apply it to the restoration of PET images.  

An essential problem in the Bates’ method is how we separate zero-sheets of blur-images 

from those of original (observed) images.  If given images are simple and small enough, 

we do not need any special technique to extract the zero-sheets of blur-images.  In actual 

images like PET images, however, the structure of the their zero-sheets is complicated and 

their image-sizes are large.  Therefore, we need a special method to extract the zero-sheets 

of blur-images from the whole zero-sheet.  In the present work, we developed a method to 

achieve this.  In our method, first we solve the zero-values of a given image at discrete points 

of phase parameters, in a desired accuracy.  We carry out this by Mathematica.  Next, we 

classify the zero-values into groups by relating each of the zero-values obtained at different 

points of the phase parameters.  We perform this by means of differential equations for the 

zero-values.  We solve the differential equations by Fortran in quadruple precision.  This 

method is very powerful and enables us to process actual images in a practical processing 

time.  In this sense, our method is practical.

Our method summarized above is very powerful but somewhat tedious.  If we can judge 

the zero-values of any blur-images without classifying the zero-values, it would simplify 

the image processing greatly.  In the present work, we showed that such a method is possi-

ble in principle if blur-images are those of the size 2 × 2.  We derived a conditional expres-

sion for such blur-images.  By using the conditional expression we can judge blur-images 

of the size 2 × 2 almost automatically.  We are now trying to find such conditional expres-

sions for other types of blur-images.

We succeeded in restoring an actual PET image using our methods summarized above.  

The restored image is surely enhanced compared with the observed PET image.  This 

verifies that our methods are very useful in applying the Bates’ blind deconvolution to the 

restoration of PET images.  In conclusion, it is possible to improve the resolution of PET 

images by an image restoration processing.  We are now trying to develop an advanced 

image-processing system by which we can restore observed PET images almost automatically.
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