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Abstract

We developed efficient methods of blind deconvolution on the basis of the Lane-Bates algo-

rithm. The methods consist of two kinds of mathematical tools and their modified versions. We

give a comprehensive summary of them in this report.
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1. Introduction

Lane and Bates’ (LB’s) blind deconvolution enables us to remove blurs convolved in a given

image without prior knowledge of the point-spread mechanism that caused the blurring [1].  The

method makes use of what the authors call “zero-sheets” of a given image.  The zero-sheets are

constructed with the zeros of the z-transform of the given image.  We will show the detail of this

method in Chaps. 2.1, 2.2 and 2.3, and will illustrate how this method works by using a sample

image convolving blurs in Chap. 2.4. We also analyzed a medical image that was obtained with

positron emission tomography (PET), by applying LB’s zero-sheet method. We will present the

details of the analysis in Chap. 2.5. 

As one can see, the zero-sheets method requires highly nontrivial numerical analysis (classi-

fication) of the zeros.  That has been a major impediment in implementing LB’s method.  We have

recently developed a novel scheme that makes such an analysis almost unnecessary [2-9].  The

rest of the report is devoted to a comprehensive summary of the new scheme. 

We have devised a powerful mathematical tool, which is called Determinant Condition (DC)

throughout this report.  The DCs enable us to find zeros of the blurs of assumed sizes without

classifying the zero-sheets of the blurs.  The DCs are particularly powerful when the blurs have

multiple structures as we illustrate later.  We will present the detail of the DC in Chap. 3.  We

have developed two forms of DCs, i.e., a derivative form and a multi-point form.  With the deriva-

tive form, which will be explained in Chap. 3.1, the derivatives of the zeros are evaluated using the

given image at a single point in z-space, whereas the multi-point form, presented in Chap. 3.2 uses

zeros evaluated at several points in the vicinity in z-space.

We tried two ways to reconstruct the image by using DCs.  In the first, we follow the LB

method i.e., we reconstruct the full true image in the frequency domain and obtain the true image

by the inverse Fourier transformation.  This method is demonstrated in Chap. 3.3.  In the second,

which is much simpler, and which we call “Highly efficiency method” in this report, we make use

of the matrix evaluated for the DC to calculate the matrix elements of the blur directly, and

remove it from the given image. The introduction of this method, together with its demonstration,

is done in Chap. 4.  

We also tried an approach, which is slightly different from what has been shown so far,

namely without making use of the DC.  We call this method a “Simple algorithm (SA) ” as is pre-

sented in Chap. 5.  The SA is given as a form of simultaneous equations that the assumed blur ele-

ments should satisfy.  This method is powerful in finding a single blur.  Up to this point, we

assumed that no errors are involved in the given image.  The main error gives origin to the com-
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pression of the gray levels after the convolution of the blur.  This problem is explained in the

beginning of Chap. 5.  It is important to make the algorithm of the deconvolution robust against

the error caused by the reduction of the gray levels.  The advantage of SA is that it can be modi-

fied so that the improved method, to a certain extent, is robust against this error.  This procedure

is demonstrated in Chap. 5.3. 

From the point of view of the robustness against reduced gray levels, the DC, and thus the

highly efficient method can also be modified such that one can handle images with reduced gray

levels.  This trial is explained in Chap. 6. Chap. 7 is for the discussion and summary.

2. Lane and Bates’ blind deconvolution

Often blurs are convolved in images.  They may originate from measuring equipments (quali-

ty of lens or circuit characteristics), environment (atmospheric fluctuation) or movement of the

target.  LB’s method of blind deconvolution is an analytical method that makes it possible to

remove the blurs convolved without prior knowledge of the blurs.

In this section, we give the basics of the LB blind deconvolution. The LB method of blind

deconvolution makes use of so-called zero-sheets that are constructed with the zeros of the z-

transform of an given image.  The basic idea of the zero-sheets method was published in 1987 [1]. 

2.1 Basics of the Zero-sheets method 

We consider a model image ( , )g x y that is given as the convolution of a true image ( , )f x y and

a blur ( , )h x y , i.e., 

( , ) ( , ) * ( , )g x y f x y h x y= . （2.1）

No additional noise is included.  The pair ( , )x y denotes a pixel, and thus x and y are both non-

negative integers.  The ( , )f x y and ( , )h x y are both assumed unknown.  The sizes of ( , )f x y and

( , )h x y are denoted with M N# and m n# respectively.  The size of ( , )g x y is then given as

( ) ( )M m N n1 1#+ - + - . The z-transform ( , )G u v of the given image ( , )g x y of size M N#l l is

written as
11

00

( , ) ( , )G u v
M N

g x y u v1
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x y
=

=

-

=

-

yx

!!l l

ll

, （2.2）

where u and v are complex variables.  Similarly, the z-transforms ( , )F u v and ( , )H u v of f and h are

respectively written as

0
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!! , （2.3）
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!! . （2.4）

Then Eq. (2.1) implies

( , ) ( , ) ( , )G u v F u v H u v= . （2.5）

That means that, in z-space the convolved image is given as the product of ( , )F u v and ( , )H u v .

Consequently, if we can determine ( , )H u v by some means, we can reconstruct the true image

( , )f x y as the inverse Fourier transform of ( , )G u v divided by ( , )H u v . Although the ( , )G u v is

given, we have no prior knowledge either of ( , )F u v or ( , )H u v . In order to obtain ( , )F u v in such

a situation, a highly nontrivial analysis of the zero-sheets is required as we mentioned in the intro-

duction, which we explain in the following.

Consider the equation ( , )G u v 00 = with a fixed u u0= . The left-hand side is an ( )N 1-l -th

degree polynomial of the unknown v.  Let its N 1-l roots be kb with , , ,k N1 2 1g= -l . Then

( , )G u v0 can be written as

1

1

,G u v A u v k

N

0 0= - b
=

-

k

%
l

_ _ _i i i, （2.6）

where A u0_ i is a constant dependent on u0. Thus, ( , )G u v is determined by the roots (zeros) kb ,

except for the constant A u0_ i. From Eq. (2.5), one can tell that a zero kb is either a zero of the

equation ( , )F u v 00 = or that of ( , )H u v 00 = , (or both).  Our objective, therefore, is to find the

zeros of ( , )F u v 00 = among zeros of ( , )G u v 00 = . We will treat the classification of the zeros in

detail in the next section.  

2.2 Classification of zeros 

Let u0 be equal to eu
i ut - z where ut and uz are both real > 0ut_ i. The complex solutions

for v of the equation ,G u v 00 =_ i , plotted on the Gaussian plane form trajectories when uz varies

from 0 to 2r.  Each trajectory, alone or some of them combined, form a closed curve.  The set of

these closed curves is called a “Zero-sheet”.  As the roots of ( , )G u v 00 = are either those of

( , )F u v 00 = or of ( , )H u v 00 = (or both), the zero-sheet of ( , )G u v0 is the superposition of the

zero-sheet of ( , )F u v0 and that of ( , )H u v0 . The aim of the zero-sheet method is to facilitate the

classification of the roots by making the splitting possible of the zero-sheet of ( , )G u v into that of

( , )F u v and that of ( , )H u v .

One of the problems with this method is that it is sometimes difficult to judge if the removed

closed curve really belongs to the zero-sheet of ( , )H u v . However, apart from subtle cases, a

removal of wrong trajectories leads to some disastrous results as will be demonstrated later, and

the task is relatively easy. 
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To examine the trajectories one needs to solve the equation ( , )G u v 0= by varying u with

fine steps.  As these trajectories cross each other, one needs to solve the equation with a high pre-

cision and the computation takes a huge amount of time.  This is another problem with this

method.  We have to deal with these serious problems in order to develop a practical method on

the basis of LB’s method. 

Fig. 2.1 Concept of the ut -dependence of closed curves. For fixed values of  ut , uz is varied from 0 to 2r.
A closed curve is formed with one root at some value of ut , but with multiple roots at different values of ut .

2.3 Reconstruction of true image 

As we mentioned earlier, if we identify the closed curves of the true image, we can recon-

struct the true image only with those closed curves.  In the following we present a fundamental

method for that.

The discrete Fourier transform of ( , )f x y is defined as,

1

0

1

0

-

( , ) ( , )F
MN

f x y e e1 / /
NM

i x M i y N2 2
=p h

=

-

=

- -r p r h

yx

!! . （2.7）

Consequently, if we can determine ( , )F p h at discrete points , , , M0 1 1g= -p and

, , , N0 1 1g= -h , we can obtain ( , )f x y by the inverse Fourier transformation shown by Eq.

(2.8).

1

0

1

0

-

( , ) ( , )Ff x y e e/ /
NM

i x M i y N2 2
= p h

=

-

= hp

r p r h!! . （2.8）

By taking u and v as,

expu i
M

2= - r
pJ

L

K
K

N

P

O
O, （2.9）
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expv i
N

2= - r
h

e o, （2.10）

then Eq. (2.7) is written as,

1

0

1

0

-

( , ) , ( , )F F u v
MN

f x y u v1
NM

x y
" =p h

=

-

= yx

!!_ i . （2.11）

Equation (2.11) is just the z-transform of ( , )f x y . In the following we explain how to determine

( , )F p h by using the roots of ( , )F u v . 

After classifying the zeros kb by the zero-sheets method, we determine the zeros kb of

( , )F u v at discrete points of Eq. (2.9).  Let us fix p to 0p . For expu i M20 0= - r p` j, Eq. (2.3) is

rewritten as,

1

1

,F u v A v k0 0= -p b
=

-N

k

%l_ ` _i j i. （2.12）

Thus, for any v, ( , )F u v0 is determined at discrete points of u, except for the constant A 0pl ` j.

By putting v of Eq. (2.10) in Eq. (2.12) we have, 

1

1

,F A e /i N
k0 0

2
= -p h p b-

=

-
r h

N

k

%l` ` aj j k. （2.13）

To determine the relative sizes of A 0pl ` j, we repeat the same procedure as above but with a

given v.  Let us fix h to 0h .  For expv i M20 0= - r h_ i, Eq. (2.3) is rewritten as, 

1

1

,F u v B u l

l

M

0 0= -h c
=

-

%l_ _ _i i i, （2.14）

where B 0hl _ i is not determined.  We substitute u of Eq. (2.9) into Eq. (2.14), then we have,

1

1

,F B e /i M
l

l

0 0
2

= -p h h c-

=

-
r p

M

%l` _ aj i k. （2.15）

One can “normalize” A 0pl ` j by using Eq. (2.15).  Let us fix 0h to 0 (in fact, it can be any num-

ber).  Equation (2.15) gives us the relative sizes of , , , , , , , ,F F F F M0 0 1 0 2 0 1 0g -_ _ _ _i i i i.

This suffices to determine the relative sizes of , , , ,A A A A M0 1 2 1g -l l l l_ _ _ _i i i i since we

already know , , , , , , , ,F F F F M0 0 1 0 2 0 1 0g -_ _ _ _i i i i from Eq. (2.13).  Thus all the (relative)

sizes of ,F p h` j , , , , , ; , , , ,M N0 1 2 1 0 1 2 1g g= - = -p h` j can be determined by the

inverse Fourier transformation of ,F p h` j we have ,f x y_ i.

As we mentioned in the preceding section, it is in fact difficult to classify closed curves with
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1u=t .  Next, we discuss the case of 1u!t .  By taking u and v such that 

expu i
M

2u= -t r
p

e o, （2.16）

h
expv i2v= -t r

N
e o. （2.17）

Eq. (2.3) is rewritten as

1

0

1

0

-

( , ) ( , )F
MN

f x y e e1 / /
NM

u
x i x M

v
y i y N2 2

=p h t t
=

-

=

- -r p r h

yx

!! . （2.18）

By the inverse Fourier transform of Eq. (2.18), ,f x yu
x

v
y

t t _ i is obtained.  Consequently, in the

case of 1u!t , the following transformation is needed to obtain the true image,

,
,

f x y
f x y

u
x

v
y

p
"

t t

_
_

i
i, （2.19）

where ,f x yp_ i represents the true image obtained by the inverse Fourier transform with 1u!t .
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2.4  Illustration with a sample image

In this section, we illustrate the image restoration by means of the zero-sheet method.

Figure 2.2 shows model images used for the illustration.  Figure 2.2 (a) indicates an image that

we regard as a true image.  Figures 2.2 (b), (c), (d) and (e) represent blur images of sizes 4×4,

3×3, 1×4, and 4×1, respectively.  We convolved these four blurs into the true image of Fig. 2.2

(a).  Here, it should be stressed that these blurs have been chosen only accidentally.  Figure 2.2

(f) shows the convolved image, of which the size is 108×108.

Fig. 2.2 (a) : True image of size 100×100 that we took from  [10]. (b) : Blur image of size 4×4.  (c) : Blur
image of size 3×3.  (d) : Blur image of size 1×3.  (e) : Blur image of size 3×1.  (f) : The image that was
obtained by convolving the four blurs of (b) - (e) into the true image of (a).  The size of the convolved image is
107×107. 

We analyze the zero-sheet of Fig. 2.2 (f) to obtain the true image by removing the zero-sheets

of the blurs.  First we have to determine an optimal value for ut to facilitate the distinction of the

zero-sheets of blurs from those of the true image.  For 1u=t , the zeros tend to aggregate around
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a circle with radius 1.  In such a situation, it is extremely difficult to split the zero-sheets.

Consequently, in order to classify the zero-sheets successfully we should choose a value of ut far

from 1u=t .  On the other hand, a value of ut far from 1 requires a computation at high precision

with many-digits because of the polynomial containing high power of ut .  Thus, it is seen that the

classification of the zero-sheet by LB’s method causes a dilemmatic problem. 

Fig. A2.1 given in Appendix shows the zero-sheet obtained with various values of ut .  In the

zero-sheet the zeros are plotted at only discrete points that correspond to points needed for the

inverse Fourier transformation.  In determining an optimal value of ut , we give importance to the

following two points: 

(1) To resolve clustering of zeros as much as possible.

(2) To keep the value of ut in the vicinity of unity as much as possible. 

In the present illustration, we chose .0 6u=t . For this value of ut , the aggregation of the

zeros is sufficiently resolved and ut is not too far from unity.  We carried out all the analyses in

this section with 80 digits precision. 

For the next step, namely, to identify all the closed loops in order to split the zero-sheets, we

plot the curves with many more steps in ut .  It is because we can obtain so many points by evalu-

ating the roots at different values of u, but we ignore how these points are actually connected and

form closed loops.

Fig 2.3 Zero-sheet for .0 6u =t .
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Fig. 2.3 shows the zero-sheet of the given model image at .0 6u=t .  More than 1000 times

more points are plotted in Fig. 2.3 than in Fig. A2.1 (in Appendix).  The zero-sheet is found to be

consisting of 82 closed curves.  We show each closed curve in Fig. A2.2 (in Appendix).  With Fig.

A2.2 (in Appendix), we split the zero-sheet.  The aim of the game is how to identify the closed

curves due to the blurs among these 82 closed curves.  This is a crucial problem in LB's method.

A cut and try may lead to the success of the classification of the closed loops.

In the present illustration, we know the blurs in advance because we use the model blurs

shown in Fig. 2.2.  Figure 2.4 shows the zero-sheet of blurs.  By removing the zero-sheet of blurs,

we can obtain the zero-sheet of the true image for variable v.  Figure 2.5 shows the zero-sheet

obtained by removing the zero-sheet of blurs.

Fig. 2.4 Zero-sheet of blurs (variable v).

Fig. 2.5 Zero-sheet of true image (variable v).
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We repeat the same procedure for the variable u.  Figure A2.3 (in Appendix) shows zero-

sheets of the given model image for various values of vt .  Figure 2.6 shows zero-sheet obtained

with the chosen value of .0 6v =t . The zero-sheet consists of 44 closed curves.  Figure A2.4 (in

Appendix) shows each closed curve. Figure 2.7 shows the zero-sheet of blurs for variable u.

Fig. 2.6 Zero-sheet for .0 6v =t . 

Fig. 2.7 Zero-sheet of blurs (variable u). 

We remove the zero-sheet of blurs from Fig. A2.3 (in Appendix).  Figure 2.8 shows the obtained

zero-sheet by dropping the zero-sheets of blurs for variable u.
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Fig. 2.8 Zero-sheet of true image (variable u). 

Now we reconstruct the image with only the zeros of Fig. 2.5 and Fig. 2.8 following the pre-

scription described in Sec. 2.3.  Figure 2.9 shows the image obtained by the inverse Fourier trans-

formation.  The image of Fig. 2.9 is not the true image of Fig. 2.2 (a).  The reconstructed image is

in fact an image that is the product of the true image ,f x y_ i and the factor u
x

v
y

t t .  In order to

obtain the true image we have to divide the reconstructed image by the factor u
x

v
y

t t .  Figure 2.10

shows the image obtained after this procedure.  The image is the same as the true image of Fig.

2.2 (a).

Fig. 2.9 Reconstructed image that is the product of the true image and the factor u
x

v
y

t t .

30 Efficient Methods of Blind Deconvolution Based on the Lane-Bates Algorithm

 

 
i h f i ( i bl )

 
ρ ρ



Fig. 2.10 True image reconstructed by removing blurs.

Before ending this section we illustrate how the dropping of the correct closed loops is a

cumbersome procedure.  Figure 2.11 shows an image reconstructed by removing the zeros repre-

sented by the closed curves of 14b of Fig. A2.2 and 10c of Fig. A2.4 (in Appendix), which are not

in reality due to the blurs.  The restored image is completely dissimilar to the true image shown

in Fig. 2.10.  This implies that unless we remove the zeros of blurs correctly we usually expect to

end up by obtaining an unexpected image. 

Fig. 2.11 Image reconstructed by wrongly removing the zeros 14b and 10c that are not of blurs.
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2.5 Enhancing a PET image

In this section, we illustrate the enhancement of a PET image by means of the zero-sheets

method.  Fig. 2.12 shows a PET image that was obtained from the DICOM database.  We selected

this PET image for the following two reasons.  First, the spatial resolution of the image looks

insufficient, and its improvement seems possible.  Second, the background is dark.  If the back-

ground is completely dark, namely 0, then the image is free from the error giving origin to the

trimming.  In such a situation, the convolution condition presented in Eq. (2.1) may be preserved

well.

Fig. 2.12 PET image of size 168×168,  the gray levels of which are 21345.

Fig. A2.5 (in Appendix) shows the zero-sheets of the variable v obtained with various values

of ut .  First we have to determine an optimal value for ut as we mentioned in Sec 2.4. From Fig.

A2.5 (in Appendix), in this illustration, we chose .1 3u=t as an optimal value.  We carried out all

the analyses in 40 digits precision.  Fig. 2.13 shows the zero-sheet calculated, with .1 3u=t , for

the image of Fig. 2.12 in smaller steps.
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Fig. 2.13 Zero-sheet calculated for the image of Fig. 2.12, where .1 3u =t is used.

By analyzing the zero-sheet shown in Fig. 2.13, we found that the zero-sheet consists of 8 closed

curves.  We show each closed curve in Fig. A2.6 (in Appendix), where the numbers in the paren-

theses indicate the number of zeros that form each closed curve.

We repeat the same analyses for variable u.  Fig. A2.7 (in Appendix) shows zero-sheets,

obtained with various values of vt , for the image given in Fig. 2.12.  Fig. 2.14 shows the zero-

sheet calculated with finer steps with .1 3v =t that was chosen as an optimal value. The zero-sheet

consists of 12 closed curves. Fig. A2.8 (in Appendix) shows each closed curve.

Fig. 2.14 Zero sheets obtained with .1 3v =t . 

Now we reconstruct the image by removing the zeros of a blur.  First we have to spot the closed

curves giving origin to the blur in the zero-sheet shown in Figs. A2.6 and A2.8 (in Appendix)

without prior knowledge of the blur.  In Fig. A2.6 (in Appendix), we regard the closed curves 1, 4

and 5 ( 1b , 5b and 6b , respectively) as ones for the candidates for the blur.  Fig. 2.15 (a) shows
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the image reconstructed by removing the zero 1b that forms closed curve 1 in Fig. A2.6 (in

Appendix).  As for the zeros 5b and 6b we have to remove both of them as a pair because these

two zeros are complex conjugates of each other.  Fig. 2.15 (b) shows the image reconstructed by

removing the zeros 5b and 6b that form the closed curves 4 and 5 in Fig. A2.6 (in Appendix).

Fig. 2.15 Image reconstructed by removing the zeros 1b , 5b and 6b that form the closed curves 1, 4 and 5
(variable v).  (a) The image reconstructed by removing the zero 1b that forms the closed curve 1.  (b) The
image reconstructed by removing the zeros 5b and 6b that form the closed curves 4 and 5.  All closed curves
refer to those shown in Fig. A2.6 (in Appendix).

As seen in Fig. 2.15, the reconstructed images are completely dissimilar to the given image of Fig.

2.12.  Consequently, all the zeros that we removed are not the zeros of the blur.  

Next we consider Fig. A2.8 (in Appendix) that shows closed curves in the zero-sheet for vari-

able u.  We regard the closed curves 2, 10 and 11 ( 2c , 75c and 76c , respectively) as ones for the

candidates for blurs.  Fig. 2.16 (a) shows the reconstructed image by removing the zero 2c that

forms closed curve 2 in Fig. A2.8 (in Appendix).  Fig. 2.16 (b) shows reconstructed image by

removing the zeros 75c and 76c that form the closed curves 10 and 11 in Fig. A2.8 (in Appendix).
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Fig. 2.16 Reconstructed image by removing the zeros that are deemed to be of blurs (variable u).  (a) The
reconstructed image by removing the zero 2c that forms the closed curve 2 of Fig. A2.8 (in Appendix)..  (b)
The reconstructed image by removing the zeros 75c and 76c that form the closed curves 10 and 11 of Fig.
A2.8 (in Appendix)..

The reconstructed image of Fig. 2.16 (a) is by no means a restored image.  On the other hand, the

reconstructed image of Fig. 2.16 (b) looks like the given image.  In order to evaluate how much

the reconstructed image has been enhanced w.r.t. the original, we compare the brightness of the

given image shown in Fig. 2.16 with that in Fig. 2.16 (b) after normalizing the maximum bright-

ness of it to that of the original.  Fig. 2.17 shows such a comparison.  The comparison is done at

93rd column and 93rd row.  The red and black curves show the brightness’s of the restored and

original images, respectively.  Curves shown in Fig. 2.17 (a) are rather similar, while the variation

in the brightness is clearly enhanced around 75-100 pixels in Fig. 2.17 (b). 

Fig. 2.17 Comparison of brightness between two images in Figs. 2.12 and 2.16 (b).  The black curves indi-
cate the brightness of the original image in Fig. 2.12.  The red curves show the brightness of the restored
image in Fig. 2.16 (b).  (a) The comparison is done at 93rd row.  (b) The comparison is done at 93rd column.
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We could spot the zeros of the blur for the variable u, but we failed to do it for the variable v,

although we thoroughly examined the zero-sheet for the variable v.  If the blur we spotted is one-

dimensional, the zeros of the blur do not exist for variable v.  In such a case, the zeros of the blur

for the variable u have no v-dependence.  That means those zeros stay still in the complex plane

when vz varies from 0 to 2r.  However, in reality, the closed curves 10 and 11 in Fig. A2.8 (in

Appendix) apparently have v-dependence.  This seems puzzling.  To solve this puzzle, we

assumed that the v-dependence of the zeros (for the variable u) giving origin to the blur have

roots in a broken convolution, although we regarded at the beginning of this analysis that the con-

volution condition is maintained quasi-perfectly.  We examine this situation more in detail in the

following.

Fig. 2.18 (a) shows the one-dimensional blur that is reconstructed with the zeros 75c and 76c

of the blur that form the closed curves 10 and 11 in Fig. A2.8 (in Appendix).  We experimentally

convolved it with the image shown in Fig. 2.16 (b), and obtained the image shown in Fig. 2.18 (b).

The precision of the restored image in Fig. 2.18 (b) is 40.

Fig. 2.18 (a) Blur reconstructed with the zeros that form the closed curves 10 and 11 in Fig. A2.8 (in
Appendix).  (b) Image obtained by convolving the blur (a) and the image in Fig. 2.16 (b).

Fig. A2.9 (in Appendix) shows the closed curves in the zero-sheet for variable u of the image

given in Fig. 2.18 (b), where .1 3v =t is used.  Since the image in Fig. 2.18 (b) convolves the one-

dimensional blur in Fig. 2.18 (a), there must be “closed curves” composed of standing points in

Fig. A2.9 (in Appendix).  As seen in the last two figures in Fig. A2.9 (in Appendix), there exist

seemingly two zeros that are constant and complex conjugate of each other, which are represent-

ed as dots in the figures.

Next, we reduced the gray levels of the image given in Fig. 2.18 (b) to 21345 that is the num-
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ber of gray levels of the image given in Fig. 2.12.  Fig. 2.19 (a) shows the image with the reduced

gray levels.  Fig. 2.19 (b) shows the difference between two images in Fig. 2.12 and Fig. 2.19 (a).

The difference is recognizable near the bottom edge.  Except for the slight difference, the two

images are identical.

Fig. 2.19 (a) Image shown in Fig. 2.18 (b) whose maximum brightness was normalized to the image in Fig.

2.12.  (b) Difference between the image in (a) and that in Fig. 2.12.

As a result of the reduction of the gray levels of the image given in Fig 2.18 (b), the convolu-

tion represented in Eq. (2.1) is broken.  Fig. A2.10 (in Appendix) shows the closed curves

obtained from the zero-sheet for the image of Fig. 2.19 (a), in which .1 3v =t is used. As seen in

Fig. A2.10 (in Appendix), there are no zeros that are represented as dots.  However, there must

be closed curves giving origin to the one-dimensional blur that we convolved. We guess that the

closed curve 9 is that due to the blur.  We then reconstructed an image by removing the zeros

that form the closed curve 9.  Fig. 2.20 shows the reconstructed image, which is very close to Fig.

2.18 (b). 

Fig. 2.20 Restored image by removing the zeros that form the closed curve 9 in Fig. A2.10 (in Appendix).
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Now we must conclude that the zeros that form the closed curve 9 belong to the zero-sheet of

the one-dimensional blur that we convolved.  The results of the analyses that we have presented

so far lead us to the conjecture that a broken convolution due to the reduced gray levels causes a

v (u)-dependence in the zeros of one-dimensional blurs.  In the following we show how the conjec-

ture is plausible, more in detail.  The matrix elements of the restored image shown in Fig. 2.18 (b)

is in reality real with a precision of about 40 digits.  We try to introduce gradually the effect of the

reduction of gray levels, and for that, we consider the following three cases:  (1) We used matrix

elements directly as were obtained after the reconstruction,  (2) We truncate the matrix elements

to 10 digits after the decimal point after the convolution, while the maximum matrix element was

about 3117150, (3) same but 2 digits after the decimal point.  Figs. A2.11, A2.12 and A2.13 (in

Appendix) show the closed curves obtained for the cases (1), (2) and (3), respectively.  As seen in

Fig. A2.11 (in Appendix), there exist the zero-sheets composed of dots, i.e., the closed curves 7

and 8.  As for Fig. A2.12 (in Appendix), the closed curves 7 and 8 seem to be composed of the

zeros represented as dots.  However, a close scrutiny reveals that the zeros are not really dots but

have v-dependence as shown in Fig. A2.14 (in Appendix).  In Fig. A2.13 (in Appendix), it is evi-

dent that all the zeros have v-dependence.  Consequently, it seems very plausible that the zeros of

blurs have complicated v (u) -dependence, even if they are one-dimensional blurs. 

In conclusion, we are rather sure that we could spot a one-dimensional blur in the PET image

given in Fig. 2.12 and remove it.  
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3. Determinant Conditions

In the preceding chapter, we showed the image restoration by means of the zero-sheet

method.  This method requires as demonstrated, huge computational resources.  For a practical

implementation of the LB method, we have recently developed mathematical tools which are

referred to as Determinant Conditions (DCs) throughout this report. 

By definition, the size of a blur is smaller than that of a true image.  And most of the time, it is

even much smaller.  The DC is constructed on the basis of this fact.  By assuming the size of a

blur, we can construct the DCs.  Using the DCs one can detect the zeros of a blur without analyz-

ing the zero-sheets of a given image

The DCs can be expressed in two different forms, derivative form and multi-point form. The

derivative form is given as a condition to the determinant derived from the derivatives relative to

the zeros of assumed blurs.  The derivatives can be analytically derived using whole zeros of a

given image.  On the other hand, the multi-point form is given as a condition to the determinant

evaluated at multiple points of u (or v). 

3.1 Derivative form of  DC

A root ib of ,H u v 0=_ i varies as a function of u.  That means that ,H u ib_ i is identically

zero independently of u.  Therefore one can derive equations such as, 

, , , ,
du
d H u j mn0 0 1j

j

i g= = -b_ i . （3.1）

The above mn equations, if they are independent, enable us to express the mn unknown elements

of ,h x y_ i in terms of u and the derivatives of ib with respect to u,

/ , , , , ,d du j mn0 1 2 1j j j
g/ = -b b^ h . Actually all even higher derivatives of ,H u ib_ i are also

zero.  Hence we can use derivatives of any order.  The results for ,h x y_ i, however, should be

independent of the choice of the derivatives. 

Let the matrix that consists of the coefficients of the mn elements of ,h x y_ i be CD and its

determinant Cdet D .  Matrix CD is complex in general.  Eq. (3.1) can be rewritten in a vector nota-

tion as

hC 0D = , （3.2）

where

h h h h h h h h h ht
00 01 02 10 11 12 20 21 22g g g g= _ i （3.3）

and
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where we took as u eu
i u= t - z and /

( )

i

j j
i u

j
" 2 2b b t [4].  The det CD leads to the DC [4, 7] such

as
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We require that h have a nontrivial solution, that is, the mn elements of ,h x y_ i are not all

zero.  This requires C 0=det D .  We refer to this as the derivative form of the determinant condi-

tion (DC).  The determinant used in DC for H of size m×n hereafter would be denoted by

n#Em ib_ i, i.e., 

n# CdetE Dm i i/b b_ _i i. （3.5）

Now, if uz is fixed, then the derivative du in Eq. (3.1) can be replaced by d ut , and the DC would

be denoted by .n#
E

m i
u bt

_ i

As an illustration, let us consider the case of m＝2 and n＝3. We obtain the explicit form of

CD in this case as



3#2

.

135 80 15 60 12

18 270 180 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

i i i i i i i i i i i i i

i i i i i i i i i

2 1 3 1 4 1 2 3 4 1 3 5

1 2 5 1 2 3 1 2 3

u

6 3 3 4 2 3 4

3 2 4 2 2 2

/ - + + - -

+ + - =

b b b b b b b b b b b b b

b b b b b b b b b

tE _ i

（3.7）

For ( )jb , we can take it as derivatives with respect to uz .  However, they are in fact identical to

each other.  For instance, if we take the derivative of ib with respect to uz namely

/
( )

i

j j
i u

j
" 2 2b b z we obtain the relation such as 3 3# #2 2i u i

12
u u=b t bz tEE _ _i i , where 3#2 i

u bzE _ i

is the DC obtained by taking /
( )

i

j j
i u

j
" 2 2b b z .  This can be verified with the Cauchy-Riemann

relation between derivatives of ib with respect to ut and uz , i.e., / /ii u u i u2 2 2 2=b z t b t_ i (the

relations between higher degree derivatives are obtained from this relation).

Next, we would like to show that the DC derived for 2×3 implicitly includes DCs for blurs of

sizes smaller than 2×3, i.e., 2×2, 1×3 and 1×2.  This is because the Cdet D can be expressed

as a linear combination of DCs for the blur elements of each of the assumed smaller sizes. 

For instance, we can show an explicit decomposition of Eq. (3.6) into DCs for 2×2 blurs, i.e.,

3 2# #
1

2 2Ai k i i
k

6
u u=b b b

=

t tE
k

E !_ _ _i i i , （3.8）

where Ak and 2#2 i
k

u btE _ i are given as,

A 2 3 3
( ) ( ) ( ) ( )

i i i i i i1
2 1 3 1 2 24 2

=- + +b b b b b b , （3.9）

A 6 4 2 12 4
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

i i i i i i i i i i i i i i2
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=- + + - -b b b b b b b b b b b b b b , （3.10）
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b b b

（3.11）

,
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（3.12）

,
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2 2 2 4

2 2 2

= - - - +

+ + - +

b b b b b b b b b b b b b

b b b b b b b b b b b b

（3.14）

and

2#2 , , , ,5 4 0 1 4 5
( ) ( ) ( )

i i i i1

4 5 3
u

2

=- +b b b btE _ _i i （3.15）

2#2 , , , ,5 3 0 1 3 5
( ) ( ) ( ) ( )

i i i i i2

3 4 5 2
u =- +b b b b btE _ _i i （3.16）
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2#2 , , , ,4 3 0 1 3 4
( ) ( ) ( )

i i i i3

3 4 2
u

2

=- +b b b btE _ _i i （3.17）

2#2 , , , ,5 2 0 1 2 5
( ) ( ) ( ) ( )

i i i i i4

4 2 5 1
u =- +b b b b btE _ _i i （3.18）

2#2 , , , ,4 2 0 1 2 4
( ) ( ) ( ) ( )

i i i i i5

3 2 4 1
u =- +b b b b btE _ _i i （3.19）

2#2 , , , ,3 2 0 1 2 3
( ) ( ) ( )

i i i i6

2 3 1
u

2

=- +b b b btE _ _i i （3.20）

where the numbers in parenthesis in Eq. (3.15) - (3.20) indicate the order of derivatives used for the

derivation of the DC (see Eq. (3.1) and the statement immediately after).  Equations (3.15) - (3.20)

are all DCs for 2×2 blurs.  The simplest form 2#2 i 6

u btE _ i of Eq. (3.20) is obtained from Eq. (3.1)

[2].  Other ones are obtained by taking the higher order derivatives than those in Eq. (3.1).  Note

that 2#2 i 2

u btE _ i and 2#2 i 5

u btE _ i are respectively obtained by differentiating 2#2 i 3

u btE _ i

and 2#2 i 6

u btE _ i with respect to ut .  Thus, it is seen that 3#2 i
u btE _ i for 2×3 blurs can be rewrit-

ten as a linear combination solely of the DCs for 2×2 blurs.  Similarly, it can be explicitly shown

that the DCs of Eqs. (3.15) - (3.20) for 2×2 blurs can be expressed solely in terms of the DCs for

1×2 blurs.  This indicates that 3#2 i
u btE _ i for 2×3 of Eq. (3.7) can detect the zeros of blurs of

sizes 2×3, 2×2 and 1×2 all at the same time.  It should be noted that Equation (3.7) also includes

DCs for blurs 1× j with j > 3 (larger one-dimensional blurs).  For such one-dimensional blurs, all

zeros are independent of u and its derivatives with respective u are all zero.  This feature that we

have demonstrated for the size of 2×3 can be generalized to any size.  The DC calculated for the

size of m×n can be expressed solely in terms of DC for a size m'×n' where m’ and n’ are smaller

or equal to m and n respectively.  This means that if we see that the DC is satisfied for a sufficiently

large size, then we can certify the convolution of a blur of that size or smaller.

Although we examined DCs for the zeros of ,H u v_ i, in the actual analysis we have to deal

only with ,G u v_ i that is defined in terms of the given image ,g x y_ i since we have no prior knowl-

edge of the blurring function ,h x y_ i. With a given u, we numerically solve ,G u v 0=_ i for

unknown v.  Some of these roots can be the roots of ,H u v 0=_ i .  In that case, Eq. (3.1) with

,H u v_ i replaced by ,G u v_ i holds.  Let one of such roots be b, i.e., assume that ,H u 0=b_ i .  In

order to work out the matrix elements of C, we have to evaluate derivatives of b with respect to u

which we can do using Eq. (3.1) in which ,H u b_ i replaced by ,G u b_ i.  The derivatives can explic-

itly be written down in the form of rational functions of u.  As examples we give analytical expres-

sions for the derivatives of ib , up to the fifth order.  From , / , , ,d G e d k0 1 5k
u

i
i u

k
u g= =t b t- z

a _k i

the derivatives of the zeros ib are given as,
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In Eq. (3.26) , , , , ,p q 0 1 2 5g= , with p q 5+ = .  In this way the derivatives of the root ib are



given in terms of known ( , )g x y and the root ib itself, that are evaluated at a point of u, hence

det CD can be evaluated for that root.  

What we showed so far can be summarized as follows:

1.  Choose a value u0 for u.  

2.  Find a solution ib of ,G u v 00 =_ i for v. 

3.  Calculate higher derivatives
( )

i

j
b using the elements ,g x y_ i and ib itself.

4.  If det C 0D= for a size m n# , then a blur exists, and the root ib satisfies ,H u 0i0 =b_ i

where the size of h is m n# or smaller.

We can also obtain a DC just by replacing the role of u and v of the expressions above.

Finding a solution ic for u of the equation ,H u v 0=_ i for a fixed value of v, one can derive deriv-

atives of the equation ,H v 0i =c_ i .  One can obtain a similar equation as Eq. (3.2), but CD now

contains v, ic , and derivatives of ic .  For example, for the case of size 2×3 case we can derive

the explicit form of the DC for ic , i.e.,

2 3×
40 60 15 18 12 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

i
i i i i i i i i i i i

3 2 3 4 1 4 2 5 1 3 5v
3 2 2

/ - + - - + =c c c c c c c c c c c ctE _ i ,

（3.27）

where we took as v ev
i v= t - z and /d d( )j

i

j
i v

j
=c c t [4, 7].

Before ending this section we should emphasize an interesting feature of the DC of the deriv-

ative form.  As mentioned before, we can use derivatives of any orders higher than those of Eq.

(3.1) when we construct DCs for an assumed blur.  If we use such higher derivatives we obtain

DCs generally more complicated with higher order derivatives of zeros ib or ic .  We can also

obtain such DCs by differentiating DCs constructed with lower order derivatives of roots ib or

ic .  

3.2 Multi-point form of DC

In the preceding section we presented the derivative form of the DC.  The derivative form of

the DC is very sophisticated in the sense that it can be evaluated at a single point in z-space.  In

this section we present yet another version of the DC, which is a little more primitive yet simpler

to introduce and easier to use. 

We consider the same situation as the preceding section, i.e., a situation where noise is

absent and a given image ( , )g x y can be modeled as the convolution of a true image ( , )f x y and a

blur image ( , )h x y as given in Eq. (2.1).  For a given u, equation ,H u v 0=_ i has in general multi-

ple roots for v.  let v i= b be one of those roots.  When u is varied, the root also varies as a func-
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tion of u, i.e., ui i=b b _ i.  The expression ,H u ib_ i is identically zero as we already mentioned in

the preceding chapter.  Now we make mn equations by varying u, i.e.,

, , , ,H u u j mn0 0 1j i j g= = -b _` ij . （3.28）

Note that any of these equations contains all the matrix elements ,h x y_ i.  Also note that if the

equation has multiple roots >m 2_ i, we can make Eq. (3.28) by picking any one of the roots (i.e.,

they can belong to different closed loops in the definition of Lane and Bates’ “zero-sheet”).  The

mn equations enable us to express mn unknown elements ,h x y_ i in terms of uj and ujb _ i,

, ,j mn0 1g= - .  Let the mn×mn matrix that consists of the coefficients of mn elements ,h x y_ i

be CM, i.e.,

hC 0M = , (3.29)

where h is defined in Eq. (3.2), and the matrix CM is given as,

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

b

b

b

- - - - -

- - - - -

- - - - -

C

u u u u u u u u u

u u u u u u u u u

u u u u u u u u u

1

1

1

M

n n m m n

n n m m n

q q

n

q q q q q

n

q
m

q
m

q

n

0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1

g g gg

g g gg

h h h h h h h h

g g gg

=

b b b b

b b b b

b b b b

u

u

u

J

L

K
K
K
K
K
K
K
K
K

_ _ _ _ _

_ _ _ _ _

_ _ _ _ _

N

P

O
O
O
O
O
O
O
O
O

i i i i i

i i i i i

i i i i i

,

（3.30）

where q mn 1= - and we dropped the factor 1/mn [6, 9].  We require that Eq. (3.28) have a non-

trivial solution, that is, mn elements of ,h x y_ i are not all zero.  This requires det C 0M= .  We

refer to this as the multi-point form of the determinant condition (DC).  Hereafter we denote the

DC for m×n blur with
m n 1× -, ,E uu

mn0 gb b u_ _` i ij.  Like in the case of derivative form of DC,

the DC for the size of m×n is satisfied if any blur of size smaller than m×n is convolved.  This

follows from the structure of the determinant det CM.  Further, the DC can detect the zeros of

blurs of size , ,k k n N1 1× g= +_ i like in the case of derivative form of DC. 

The multi-point form of the DC is simpler to use than the derivative form of the DC since we

do not have to evaluate derivatives of the zeros.  However, there is a drawback in the multi-point

form.  We mentioned above that the roots we use in Eq. (3.30) can be any one in case there are

multiple roots.  This is true when only one blur is convolved in the image.  If multiple blurs are

convolved as we see in Sec. 3.3, and the sizes of the blurs are different, then the multi-point DC is

satisfied if the roots are selectively taken from the same loop in the sense of Lane and Bates’

“zero-sheet”.  This is only a minor drawback since the convolution of multiple blurs is rare.
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More important in the real application of DC to an image is, suppose we choose one value of

u, and all the roots of ( , )G u v 0= for v are calculated.  We pick up one of the roots, and want to

identify if this root is actually the root of ( , )H u v 0= , or that of ( , )F u v 0= .  We can instantly tell

if this root satisfies the derivative form of DC.  But to use the multi-point form, we have to select a

few points of u, calculate the roots, and choose roots all giving origin to ( , )H u v 0= .  This is not

an easy task if we do not know the structure of the “zero-sheet”.  As we know that for a small

change of u, the change of the roots is also small.  Thus we can take mn－1 different points

, , ,u l mn0 1 1l g= -_ i in the vicinity of chosen uj , i.e., as u u l u,j l j= + D ., and pick 'sjb also in

the vicinity of the target ib .  This requires an optimization of the parameter uD . Namely, to be

able to pick the “same” ib we have to take uD sufficiently small.  (By “same” ib , we mean the

'sjb such that, when u ,j l are all reduced to the same value, then all the associated 'sjb coalesce.)

If uD we take is too small, ib solved for mn different points u ,j l become too close to each other.

This may cause more than two row vectors in det CM to be nearly proportional to each other, and

det C 0M. may be caused, which does not necessarily mean that the condition is satisfied. 

In order to complete the image restoration we need the DC also for the variable u.  The DC

for u is given in a form similar to det CM for v .  The DC for u is denoted as

m n× 1-, ,E v v 0v
i i mn0 g =c c_ _` i ij where ic are the zeros of u for the blurs.

In the discussion hereafter, the matrix CD and CM can be interchangeably used.  We use C,

which can stand for both CD and CM.  When the discussion is restricted to one form of C, then

we explicitly write CD or CM.  We did most of the computation for the illustration or demonstra-

tion using CD for C.  But of course, CM can be used in most of the parts without any problem.
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3.3 Reconstruction of the true image using DC

In the preceding section we have given two variations of the DCs.  In this section, we illus-

trate the image restoration with the DCs and show how this novel scheme is useful in implement-

ing the LB blind deconvolution. 

We use the same model images as in section 2.4.  We apply the derivative form DC for a blur of

size 4×4 to a given image.

We first illustrate how zeros of the blurs can be detected through E i4 4
u

×
bt

_ i and

.E i4 4
v

×
ct
_ i For the parameters ut and vt we take them to be 1u v= =t t .  We can take any val-

ues for ut and vt in principle.  Figure 3.1 shows the results of numerical evaluations of the DCs

for the convolved image shown in Fig. 2.2 (f). We carried out the evaluation at

/ , , ,j j2 107 0 106u g= =z r and / , , ,k k2 107 0 106v g= =z r . Note that when we restore the

image by inverse Fourier transformation, we need the representation of ( , )G u v at these argu-

ments of uz and vz . In Fig. 3.1 we plot the size of E i4 4
u

×
bt

_ i namely, log E 1i4 4
u

×
+bt

_ i; E and

log E 1i4 4
v

×
+ct

_ i; E for four arguments of uz and vz , respectively.  As we have stressed in the

preceding section, E i4 4
u

×
bt

_ i and E i4 4
v

×
ct
_ i both include DCs for blurs of smaller sizes 1×3,

3×3 and, 4×4 implicitly.  Therefore, E i4 4
u

×
bt

_ i should detect seven (＝2＋2＋3) zeros.  When

there exists a degenerate zero in the 3×3 blur, the number of zeros is reduced to six.  On the

other hand, the number of zeros ic that should be also detected through E i4 4
v

×
ct
_ i is seven (＝

2＋2＋3). 

As seen in Fig. 3.1 (a), for 0u=z , seven zeros , , , , ,1 2 3 4 26 49b b b b b b and 50b are detected

by .E i4 4
u

×
bt

_ i Also at other uz , seven zeros are detected by .E i4 4
u

×
bt

_ i Here, note that the

order of roots detected are different at each uz (They are sorted according to the rule of

Mathematica, namely in the ascending order of the real part, and then ascending order of the

imaginary part.).  In the evaluation of the DC we obtained zeros ib by solving the 106th degree

polynomial of v numerically by Mathematica, separately at each uz with a precision of 150 digits.  

For 0v =z , as seen in Fig. 3.1 (b), seven zeros , , , , ,1 2 3 41 42 57c c c c c c and 58c are detected

through E i4 4
v

×
ct
_ i , as expected.  Also at other arguments vz , seven zeros are clearly detected

by E i4 4
v

×
ct
_ i .  As we mentioned earlier, E i4 4

u

×
bt

_ i and E i4 4
v

×
ct
_ i detect the zeros of blurs of

not only the size 4×4 but also the sizes 1×3 and 3×3 simultaneously.  The results of Fig. 3.1

assure that the detection of the zeros was done successfully.
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Fig. 3.1 Results of the evaluations of E i4 4
u

×
bt

_ i and E i4 4
v

×
ct
_ i .  In (a) and (b), log E 1i4 4

u

×
+bt

_ i; E

and log E 1i4 4
v

×
+ct

_ i; E are plotted for the zeros numbers ib and ic .  We took ut and vt as

1u u= =t t . 

We have shown that the derivative form of the DCs functions very well in detecting zeros of

multiple blurs that are convolved in a given image.  Next, we illustrate the multi-point form of the

DC by using the same image as above. 

In Fig. 3.2 we show the results of the numerical evaluations of the multi-point form of the

DCs , ,E u uu
i i0 15gb b

4 4× _ _` i ij and ,, ,E u uv
i i0 15gc c

4 4× _ _` i ij where we plot the sizes of them

namely, , ,log E u u 10 1u
i i0 15

400
#g +b b

4 4× _ _` i ij; E and

, ,log E v v 10 1v
i i0 15

400
#g +c c

4 4× _ _` i ij; E.  We took uD and vD as eu v
i

= = tD D - zD and used

/20000=z rD and 1=t , as optimized parameters.  We took zD to be very small so that ib and

ic picked up belong to the same family, respectively.  However, as we mentioned earlier, if we

take too small zD there is a risk of misjudgment due to the rounding errors.  Thus we need to

 

  

  

  

  

×
ρ β ×

ρ γ

×
ρ β + ×

ρ γ + β

γ ρ ρ ρ = ρ =



evaluate the DC in a high precision.  Note that the absolute values of E u

4 4×
and Ev

4 4×
are of the

order of 10-300.  This is why we multiplied E u

4 4×
and Ev

4 4×
by 10400 for the plotting in Fig. 3.2.

As seen in Fig. 3.2 (a), for 0u=z seven zeros, , , , , ,1 2 3 4 26 49b b b b b b and 50b are found

through , ,E u uu
i i0 15gb b

4 4× _ _` i ij as roots giving origin to the blurs.  Also at other arguments

uz , seven zeros due to the blurs are found with ., ,E u uu
i i0 15gb b

4 4× _ _` i ij As seen in Fig. 3.2

(b), for 0v =z seven zeros , , , , ,1 2 3 41 42 57c c c c c c and 58c are found as those due to the blurs

with ., ,E v vv
i i4 4 0 15×

gc c_ _` i ij Also at other arguments vz , seven zeros are detected through

., ,E v vv
i i0 15gc c

4 4× _ _` i ij Note that the zeros detected through , ,E u uu
i i0 15gb b

4 4× _ _` i ij and

, ,E v vv
i i0 15gc c

4 4× _ _` i ij are the same as those found with the DCs of the derivative form (see

Fig. 3.1). 

Fig. 3.2 Results of the evaluations of the DCs , ,E u uu
i i0 15gb b4 4× _ _` i ij and ., ,E v vv

i i0 15gc c4 4× _ _` i ij

(a) and (b) show the results of the evaluations for ib and ic , respectively.  We took ut and vt as 1u v= =t t .
See text for the plotted value.
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In Fig. 3.3 we show the image restored by removing seven zeros ib in v and seven zeros ic

in u.  The restored image is the same as the true image of Fig. 2.2 (a).  Thus, we confirm that the

zeros of blurs convolved in the given image are correctly detected through E i4 4
u

×
bt

_ i and

E i4 4
v

×
ct
_ i . These results demonstrate that the DC is very powerful tool for the LB blind decon-

volution.

Fig. 3.3 Image restored by removing seven zeros detected through E i
u bt

4 4× _ i and E i
v ct

4 4× _ i , respectively
of the derivative form of the DC.  Same restored image was obtained by seven zeros spotted through

, ,E u uu
i i0 15gb b

4 4× _ _` i ij and , ,E v vv
i i0 15gc c

4 4× _ _` i ij ,  respectively of the multi-point form of the DC.

In this section, we illustrated the image restoration by removing the all the zeros of blurs

detected at every discrete points of variable u and v.  This is the method indicated by LB, and thus

one can conclude that DC is a powerful tool for the real implementation of the LB blind deconvo-

lution.  However, in reality, once at one value of u or v, a root satisfying DC is found, one can

reconstruct the true image using the matrix C.  We describe the detail of this highly efficient

method in Chap. 4.
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4. Highly efficient method using the DC

In the preceding section, we presented Determinant Conditions (DCs).  It is based on the idea

that the size of the blur is smaller, and often much smaller than that of the true image.  The DCs

allow one to determine existence of a blur of an assumed size convolved in the image.  By virtue of

it, the classification of zeros becomes unnecessary, and the trial and error in the choice of zero-

sheets is no more needed.  Thus, if the assumption about the size of the blur is right, one can

instantly tell whether or not a zero is due to the blur.  We developed a method to restore the true

image by dropping all the zeros coming from the blur at all discrete values of u needed for the

inverse Fourier transformation in Sec. 3.3.  In this chapter, we further show that it is even not nec-

essary to evaluate the DCs at all the discrete values of u for the reconstruction.  One can pick up a

single zero satisfying the DCs at any one point of u.  One can reconstruct the blur matrix by using

the determinant employed in the DCs (detC ’s).  This method allows one to skip huge amount of

computation.  

4.1 Restoration of the original image

If Eq. (3.2) gives a unique solution for h namely hxy , then F can be calculated by dividing G by

H that is a z-transform of hxy .  The detail of this method will be shown in Sec. 4.2.  This is clear that

this method works when the size of the assumed blur in constructing the DCs is the same as that

of a convolved blur.  In such a case, we can uniquely determine the blur by taking h00 to be 1, for

example.  However, there are cases where Eq. (3.2) does not give a unique solution for h.  We will

consider those cases in the following  sections.  

4.1.1 Blurs smaller than assumed

As we mentioned in Sec 3.1, it must be noted that if a Cdet is evaluated at ib whereas the real

size of the blur m'×n' is smaller than m×n, the DC is always satisfied. Therefore if a root ib is

found for ,G u v 0=_ i , and this is actually a root of ,H u v 0=_ i , Cdet calculated for m'×n' is

equal to 0 if the real size of the blur n' is smaller than n.  Therefore the DC can be used for the

detection of the existence of a smaller blur.  However, in that case, Eq. (3.2) fails to give the blur

matrix elements.  We will show that even in such a case, it possible to identify the real size of blur

and also determine hxy . 

The real size of the blur can be found from the rank of the matrix C.  If Cdet is calculated for

4×4 and the real size of blur is 2×2 that is, m＝2, n＝2, the rank of the matrix C is 7.  This num-

ber represents 9 degrees of freedom since the size of the matrix C is 16×16. Taking the case of



Cdet for the size 4×4 as an example, we show in Table, how the rank of the matrix C is related

to the real size of blur convolved.

Table When the real size of the blur convolved is actually smaller than the size of the DC, the

rank of the matrix C changes according to the size of the convolved blur. The relation between

the size of the blur and the rank is shown for the case of DC for size 4×4.

One can construct such table for DC for any size m×n.  We do not show the proof here, but one

can make this table as follows.  First, calculate the degree of freedom. The degree of freedom rep-

resents how many possibilities there are to place a piece of m'×n' in the frame of size m×n.  The

rank is the difference between mn and the degree of freedom. (The rank of matrix C is always m,

and this is an exception of the reasoning above.)

Using such a table, one can find the real size of the blur spotted with the DC from the rank of

matrix C.  If one finds the real size of blur, one can obtain the elements of the blur imposing that

all the elements included in the matrix m×n, but not in the matrix m'×n' be zero (leaving the

m'×n' elements as unknown).  We will demonstrate this special case in Sec. 4.2.2 and Sec. 4.2.3. 

4.1.2 One-dimensional blurs

Another case where this method fails is when the blur is a convolution of two one-dimension-

al blurs, one horizontal and one vertical.  In other word, the blur of size m×n is separable into a

blur of 1×n and a blur of m×1, namely

,h x y h x h y1 2=_ _ _i i i. （4.1）

A typical case is when the point-spread function is a Gaussian.  For a one-dimensional blur h y_ i,

the z-transform of it is 

0

1

H v n h y v1 y
=

=

-

y

n

!_ _i i , （4.2）

which has no u dependence.  If one of the roots of H v 0=_ i is ib , then
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0

1

H n h y1 0y
= =b b

=

-

y

n

!_ _i i . （4.3）

The detC for any m×n evaluated at ib gives 0.  In this case, the rank of the matrix C is m, and

one can spot the existence of one-dimensional blur convolved.  However, in such a case, the det C

in general fails to give the blur matrix.  In this case, one needs to pick up all the roots

, , , n1 2 gb b b always making use of DC, then the elements of h can be calculated as

0

1

0

1

H v A v n h y v1
i

y
= - =b

=

-

=

-

i

n

y

n

% !_ _ _i i i . （4.4）

To detect the one-dimensional blur in the other direction, one has to repeat the same proce-

dure with respect to the zeros of the variable u.  The full procedure of a reconstruction of an

image with two one-dimensional blurs is demonstrated in Sec. 4.2.3.

4.2 Demonstration

4.2.1 Blur of assumed size

Fig. 4.1 shows model images used for the illustration purposes in this section.  Fig. 4.1 (a)

shows an image of size 245×245 considered as a true image.  Fig. 4.1 (b) represents an arbitrary

blur of size 4×4. The convolution of these two forms the sample image of size 248×248 that is

shown in Fig. 4.1 (c).

In this section, a DC of size 4×4 i4 4
u

×
btE _b i l is used for the detection of the blur.

Fig. 4.1 (a) True image of size 245×245.  (b) Blur image of size 4×4 used for the demonstration. (c)  The
image obtained by convolving the blur (b) and the true image (a).  The size of the convolved image is 248×
248.
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How the zeros of the blurs are detected with the aid of E i4 4
u

×
bt

_ i is illustrated first. The DC is

evaluated at 1u=t . In principle one can evaluate it at any value of ut .

At u＝1, ,G u v 0=_ i gives 247 solutions, among those, 244 must be the solutions of

,F u v 0=_ i , and 3, those of ,H u v 0=_ i .  The latter can be spotted with the aid of the DC.  Fig.

4.2 shows the results of numerical evaluation of the det CD’s for each of the 247 solutions.

Fig. 4.2 Evaluated result of E i4 4
u

×
bt

_ i of the image shown in Fig. 4.1 (c).  On the vertical axis, the value

log E 1i4 4
u

×
+bt

_ i; E is plotted for each ib .  The evaluation is done at u＝1,  namely with 1u =t and

1u =z .  One can see that the value is 0 with 73b , 120b and 121b .

As seen in Fig. 4.2, E i4 4
u

×
bt

_ i give very small value for three solutions 73b , 120b and 121b , and

therefore, those are identified as the solution of ,H u v 0=_ i .  Equation (3.2) allows one to obtain

the matrix elements of h with any one of these 3 solutions.  As the rank of CD is 15 and its deter-

minant is 0, Eq. (3.2) gives only the relative ratios of the matrix elements.  Then by dividing the

Fourier transform of the sample image by the Fourier transform of h the true image can be

restored.

4.2.2 Multiple blurs smaller than assumed

Next, a sample image which is a convolution of the true image and two blurs, of size 2×2,

and 3×3 each, thus both smaller than 4×4, is shown in Fig. 4.3 (c).  The size of the sample

image is 248×248.
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Fig. 4.3 (a) Blur image of size 2×2.  (b) Blur image of size 3×3.  (c) The image that was obtained by con-
volving two blurs  (b) and (c) into the true image shown in Fig. 4.1 (a).  The size of the convolved image is
248×248.

Again, ,G u v 0=_ i is numerically solved at u＝1, which gives 247 solutions.  For each of them,

DC is examined, and the results are shown in Fig. 4.4.  As was mentioned earlier, E i4 4
u

×
bt

_ i

detects solutions giving origin to blurs not only of size 4×4 but also smaller.  In the current case,

,H u v 0=_ i . for the blur of size 2×2 should give 1 solution, and ,H u v 0=_ i . for the blur of size

3×3 should give 2 solutions.  Thus in total 3 solutions should be spotted.

The results shown in Fig. 4.4 (a) demonstrate that the detection of the zeros is done success-

fully.  To find the size of the blur corresponding to those 3 solutions, one calculates the rank of

CD for each of the solutions.

Fig. 4.4 (a) Evaluated result of E i4 4
u

×
bt

_ i of the image shown in Fig. 4.3 (c).  On the vertical axis, the value

log E 1i4 4
u

×
+bt

_ i; E is plotted for each CD ib_ i.  The evaluation is done at u＝1,  namely with 1u =t and

0u =z .  One can see that the value is 0 with 75b , 84b and 85b .  (b) The rank of the matrix   CD ib_ i is calcu-

lated for each ib .  One can see that the rank is 7 for 75b ,  and 12 for 84b and 85b .
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Fig. 4.4 (b) shows that the calculated rank of CD for 75b is 7, thus it is giving origin to a blur

of size 2×2, and the rank of CD 84b_ i and CD 85b_ i are both 12, specifying the size of the corre-

sponding blur to be 3×3. 

To calculate the matrix elements of the blur of size 2×2, one solves the Eq. (3.2) by impos-

ing all the hij elements to be 0 except for h00, h01, h10 and h11.  Similarly to reconstruct the blur of

size 3×3, one solves Eq. (3.2) either with 84b or 85b , imposing all the elements of h to be 0

except for h00, …, h33.  One can restore the true image by dividing the Fourier transform of the

sample image by those of the two blurs.

Fig. 4.5 shows the results. Fig. 4.5 (a) shows the image restored by removing the blur 2×2

alone. 4.5 (b) shows the image restored by removing the blur of size 3×3 alone. Finally, Fig.

4.5 (c) shows the image restored by removing both blurs.

Fig. 4.5 (a) Restored image by removing the 2×2 blur from the image shown in Fig. 4.3 (c). (b) Restored
image by removing the 3×3 blur from the image shown in Fig. 4.3 (c). (c) Restored image by removing the
2×2 and 3×3 blurs from the image shown in Fig. 4.3 (c).

4.2.3 One-dimensional blurs

Finally, a sample image which is a convolution of the true image and a Gaussian blur that

consists of two one-dimensional blurs, is processed.  The size of the sample image shown in Fig.

4.6 (d) is 248×248.
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Fig. 4.6 (a) : Blur image of size 4×4.  It can be decomposed to two one-dimensional blurs shown in (b) and
(c). (b) One-dimensional blur of size 1×4. (c) One-dimensional blur of size 4×1.  (d) The image obtained
by convolving blur (a) into the true image shown in Fig. 4.1 (a).  The size of the convolved image is 248×248.

Again, ( , )G u v 0= is numerically solved at u＝1, which gives 247 solutions.  For each of

them, Cdet D was calculated, and the results are shown in Fig. 4.7 (a).  It shows the values of

E
4 4

u

×
bt

_ i for all 247 solutions.  The solutions 3b , 84b and 85b that satisfy DC are the candidates

for the blur.  Fig. 4.7 (b) shows the rank of CD for each of the solutions.  According to Table, 3b ,

84b and 85b , are identified as one-dimensional blur since the rank of ,C CD D3 84b b_ _i i and

CD 85b_ i are all 4.  By using all of 3b , 84b and 85b in Eq. (4.4) one can reconstruct the elements of

one-dimensional blur apart from the common factor A.  The reconstructed blur is found to be

identical to the one shown in Fig. 4.6 (b).  One repeats the same procedure for the other dimen-

sion namely for v = 1.  The results are shown in Fig. 4.8.  Fig. 4.8 (a) shows that the solutions 3b ,

84b and 85b among 247 are the candidates for a blur.  Fig. 4.8 (b) shows that the rank of CD for

these solutions are all 4, and thus one concludes tha 1c , 84c and 85c are all from a one-dimension-

al blur.  Therefore using Eq. (4.4) in the same manner as above, one reconstructs the elements of

one-dimensional blur shown in Fig. 4.6 (c).  One can restore the true image by dividing the

Fourier transform of the given image by that of the convolution of two one-dimensional blurs.

Fig. 4.7 (a) Evaluated result of E i4 4
u

×
bt

_ i of the image shown in Fig. 4.6 (d).  On the vertical axis, the value
log E 1i4 4

u

×
+bt

_ i; E is plotted for each ib .  The evaluation is done at u＝1,  namely with 1u =t and
0u =z .  One can see that the value is 0 with 3b , 84b and 85b .  (b) The rank of the matrix CD ib_ i is calculat-

ed for each beta. One can see that the rank is 4 fo 3b , 84b and 85b .
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Fig. 4.8 (a) Evaluated result of E i4 4
v

×
ct
_ i of the image shown in Fig. 4.6 (d).  On the vertical axis, the value

log E 1i4 4
v

×
+ct

_ i; E is plotted for each ic .  The evaluation is done at v＝1,  namely with 1v =t and 0v =z .

One can see that the value is 0 with 1c , 84c and 85c .  (b) The rank of the matrix CD ic_ i is calculated for each

beta.  One can see that the rank is 4 for 1c , 84c and 85c . 
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5.  A simple algorithm for eliminating blurs

As we illustrated in Secs. 3.3 and 4.2, the DCs function for finding and eliminating blurs con-

volved in given images very well, even if the given images are convolution of multiple blurs.  In

this chapter we present yet another type of algorithm for finding and eliminating blurs, which we

refer to as “Simple Search Algorithm” throughout this report.  The algorithm makes use of all the

zeros found for a given set of u (or v).  The detail of this method will be presented in Sec. 5.1, and

a demonstration of the reconstruction using this method will be shown in Sec. 5.3

This algorithm is useful in pinpointing only a single blur of a specified size at a time, even

multiple blurs are convolved in the given image.  But the great advantage of this algorithm is else-

where.  That is, this method is easily extendable to the case of “reduced gray scale”. By this

term “reduced gray scale”, we mean the following.  Suppose the full gray scale of the original true

image is p bits.  When the convolution of a blur occurs, the full gray scale of the blurred image is

more than p bits.  Now, if the image is “compressed” to p bits, then the convolution is no more

mathematically exact due to the rounding error, but rather it is approximative.  Let us call this sit-

uation a “reduced gray scale”.  If an algorithm is applicable also to such an image, we call the

method “robust” against the reduction of the gray scale.

In this chapter we will further present a variation of the Simple Search Algorithm, which

functions to a certain extent when the gray level of the given image is reduced.  In such a situa-

tion, we can assume an approximate solution for the blurring function, which we will find by intro-

ducing an evaluation function 2| and by minimizing it as a function of the blur elements and addi-

tional parameters.  This modification will be presented in Sec. 5.2.  A demonstration of this modi-

fied version applied to an image with reduced gray levels will be shown in the second half of Sec.

5.3.

5.1 Simple algorithm 

First we consider the same situation as that we considered in the previous Chapters, i.e., a

situation where noise is absent and a given image ( , )g x y can be modeled as the convolution of a

true image ( , )f x y and a blur image ( , )h x y given as Eq. (2.1).  For a given uj , the solutions v of

the equation ( , )G u v 0= are denoted by , , ,i N1 2 1j

i
g= -b l_ i where suffix j stands for different

values of u.  Then ( , )G u v of Eq. (2.2) can be expressed as

0

1

( , )G u v k vj j
j

i
= - b

=

-

i

N

% a k. （5.1）
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The blur function H can also be expanded in the same manner as above;

0

1

( , )H u v p vj j
j

i
= - a

=

-

i

n

% a k, （5.2）

where j

i
a is the i-th solution of ,H u v 0=_ i . From Eq. (2.2), it follows that j j

1a b% %/ /. 

The RHS of Eq. (5.2) can be expanded as

0

1

( , )H u v p c vj j y
y

=
=

-

y

n

! , （5.3）

where cy is the coefficient of the degree y term, all containing j

0a through 1-

j

n
a except for cn-1

which is just 1.  Thus we obtain n equations
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（5.4）

which can be considered as a set of simultaneous equations for mn＋1 unknowns ,h x y_ i and

pj  [5, 8].

Our aim is to determine the blur functions ,h x y_ i from these equations.  The number of

independent equations in Eq. (5.4) is n.  Therefore, in order to determine ,h x y_ i uniquely, one

needs to obtain Eq. (5.4) for several different values of uj.  Let the number of repetition needed be

q.  Thus, we have to solve q times the equation ( , )G u v 0j = at different values of uj .  We will then

have qn equations, but also will have mn+q unknowns (q being the number of parameters pj).  We,

however, need to find only the relative size of h, thus one of the pj’s, say p0, can be put to 1.  Thus

the total number of unknowns is mn＋q－1.  Solving the inequality mn q qn1 #+ - , one finds

that the minimum repetition needed is /q mn n1 1$ - -_ _i i.  Then, one can solve mn q 1+ -

simultaneous equations picked up from these qn equations.  

If these equations have a unique set of solutions for ,h x y_ i and p j 's, then the selected j

i
b

are in reality j

i
a 's.  Once an m×n blur matrix ,h x y_ i is found, one can construct the z-transform

( , )H u v of it.  Hence, one can obtain the z-transform ( , )F u v of a real image ( , )f x y simply by

( , ) ( , ) / ( , )F u v G u v H u v= , which allows us to restore the true image by the inverse Fourier trans-

formation.  However, if the simultaneous equations have no solutions, then it means that the
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choice of j

i
b 's as candidates for j

i
a 's was wrong.  If we assume that the q choices of uj are just

right so that in each q steps, one can easily choose a j

i
b of the same family as in the first step,

then the number of possible choices of j

i
b 's for j

i
a 's is 1-1Cn-N for a given M×N image.

Thus even if we are unlucky, we can reach the right blur after this many trials.

The search algorithm for finding m×n blur matrix ,h x y_ i is summarized as follows:

1. Assume the size of the blur, and determine accordingly the smallest integer q that satisfies

/q mn n1 1$ - -_ _i i. 

2. Choose any value u0 as a starting value of u.  Solve the equation ( , )G u v 00 = . 

3. Solve q-1 more times the equation ( , )G u v 0j = at different values of uj .  Note that we change

the values of uj only slightly every time. 

4. Pick up n-1 roots as candidates for 0a 's among N roots ( 0b 's) at value u0. 

5. Select each time, among the N roots found ( jb 's), n-1 roots that are close to the ones select-

ed at step 4 as candidates for ja 's at that uj . 

6. Set up Eq. (5.4) for all uj in order to obtain qn equations.  Then, pick up mn＋q－1 equa-

tions out of these qn equations

7. Solve the set of equations as simultaneous equations.  If these equations have a set of solu-

tions, we can reconstruct ,H u v_ i.  Furthermore, those j

i
b ‘s are actually identified as j

i
a 's

that satisfy ,H u 0j
j

i
=aa k .

8. If the simultaneous equations have no solutions, repeat the step 4 to 7 until the set of equa-

tions have solutions, but at most 1-1Cn-N times.

9. Restore the true image ,f x y_ i by removing the blur using , , / ,F u v G u v H u v=_ _ _i i i.  

As stated above, the reason why we make small steps in the choice of uj 's in step 4 is, we

hope in that case the j

i
b in a same family are also close.  Then the right selection of j

i
b 's in step

5 is easy.  However, if the steps are too small, then the whole procedure fails due to the rounding

error.  Thus, this is the most delicate point in this method.

We have constructed the algorithm in terms of the zero-values of the variable v.  Of course

we may use the zero-values , , ,i M1 2 1i g= -c l_ i of u instead of v in constructing the same algo-

rithm. This version can simply be obtained by the replacements , ,N M n m i i" ) "b cl l , and

u vj j" . 
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5.2 A modified Simple algorithm

Next we consider a situation where the gray level of the given image is reduced.  In such a

situation, the convolution given in Eq. (2.1) is broken by the errors caused by the compression of

the gray levels.  This modified version is, however, based on the assumption that the errors are

small.  In such a situation, we can assume an approximate solution for the blurring function,

which we will find by defining an evaluation function 2| and by minimizing it.

In this situation, the simultaneous equations (5.4) do not hold exactly because j

i
a in Eq.

(5.4) are not exact solutions of Eq. (5.4).  We then define 2| by 

1
j

q
2 2
=| |

=i

! , （5.5）
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and determine unknown ,h x y_ i and p j ’s by minimizing 2| by 

, , ,
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（5.7）

When 2| is minimized, then we regard ,h x y_ i and p j as a set optimal solutions. 

In the next section we show how this algorithm functions in restoring blurred images and is

robust against reduced gray levels. 

5.3 Test of a simple algorithm for finding blurs

In the preceding section, we discussed a search algorithm for finding a single blur convolved

in a given image.  In this section we present one of the results of the tests of image restoration
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done by means of the search algorithm.

Fig. 5.1 (a) shows a 245×245 model image that we regard as the true image, which is the

same as that we used for the tests of the DCs in the preceding section. Figs. 5.1 (b), 5.1 (c) and

5.1 (d) are blurs of sizes 2×2, 2×3 and 3×3, respectively.  We convolve these three blurs sepa-

rately into the true image in each test.  The 3×3 blur is newly introduced for the present test.

Figure 1 (e) shows the convolved image with this blur. The size of the convolved image is 249×

250.

Fig. 5.1 (a) : True image of size 245×245.  (b) : Blur image of size 2×2.  (c) : Blur image of size 2×3.  (d) :
Blur image of size 3×3.  (e) : Image obtained by convolving the three blurs of (b), (c), and (d) into (a).  The
image size is 249×250.

× ×
× ×

×



We test how the search algorithm represented by Eq. (5.4) functions in finding each single

blur convolved in the true image.  To choose 'u sj we imposed u 1j = , and changed only their

arguments.  Parameter q is 4, 3, and 5 for each blur of Fig. 5.1 (b), 5.1 (c) and 5.1 (d).  Figure 5.2

shows the results of the test.  Figure 5.2 (a) shows the image restored by removing the 2×2 blur

that has been detected by searching for a 2×2 blur in Fig. 5.1 (e).  Fig. 5.2 (b) shows the image

restored by removing the 2×3 blur that has been detected by searching for a 2×3 blur in Fig.

5.2 (a).  Finally, Fig. 5.2 (c) shows the image restored by removing the 3×3 blur that has been

detected by searching for a 3×3 blur in Fig. 5.2 (b).  In obtaining the final restored image of Fig.

5.2 (c) we applied the search algorithm three times.  In each search, the algorithm functioned

very well for blurs of different sizes. In this way we verified that the search algorithm works well

in finding at a time a single blur convolved in a given image.  This test is just one of the many tests

that we have carried out.

Fig. 5.2. Restored images by removing three blurs that were searched for by the search algorithm. (a) :
restored image by removing the 2×2 blur from the image of Fig. 5.2 (e) ; (b) : restored image by removing
the 2×3 blur from the image of (a) ; (c) : restored image by removing the 3×3 blur from the image of (b). 

Next we show how the search algorithm is robust against noises that disturb the convolution.

Figure 5.3 (a) is the true image of size 100×100.  Figure 5.3 (c) is the image obtained by convolv-

ing the 2×2 blur image of Fig. 5.3 (b).  The gray levels are 2676.  Figure 5.3 (d) is the image

obtained from the image of (c) by reducing the gray levels to 256.  In the image with gray level

reduced 5.3 (d), the convolution, i.e., ( , ) ( , ) ( , )G u v F u v H u v= is broken.  As we discussed in the

preceding section, in this situation the simultaneous Eq. (5.3) does not hold exactly.  Then, we

tried to find blur elements ,h x y_ i with Eq. (5.4).  Figure 5.4 shows the restored image by remov-

ing the blur that is close to the blur of Fig. 5.3 (b).  The restored image is surely enhanced com-

pared to the given image shown in Fig. 5.3 (d).  In this way, one can see that the modified search

algorithm presented by Eq. (5.4) functions for images with a broken convolution due to the gray-

scale reduction.  
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Fig. 5.3 (a) : True image of size 100×100.  (b) : Blur image of size 2×2.  (c) : Image (2676 gray levels)
obtained by convolving the blur of (b) in to (a) ; (d)  Image obtained by reducing the gray level of image (c) to
256 gray levels. 

Fig. 5.4 Restored image from the image of Fig. 5.2 (d).
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6.  A modified highly efficient method 

In this section we present a modified highly efficient method, on the basis of the algorithm

presented in Chap. 4.  Although the highly efficient method given in Chap. 4 is extremely useful

in eliminating multiple blurs, the method is not robust against the broken convolution due to the

reduction of the gray scale.  To improve this point, we developed a modified highly efficient

method which is presented in this chapter.

The method functions to a certain extent for an image with gray level reduced.  This modified

version is based on the fact that errors caused by the gray level reduction of the given image are

small.  In such a situation, we can assume an approximate solution for the blurring function,

which we will find by minimizing an evaluation function 2| in the similar way to that used for the

modified Simple Search Algorithm in Sec. 5.2.

6.1 Robustness of the derivative form of the DC

We use the same model image as that used in the preceding section, i.e., the one shown in

Fig. 5.3.  First we show the evaluation of the DC for the convolved image of Fig. 5.3 (c).  Next, we

test the same DC for the image shown in Fig. 5.3 (d) that was obtained by reducing the gray level

of image shown in Fig. 5.3 (c).  Figure 6.1 (a) and (b) show the evaluation of E i2 2
v

×
ct
_ i for the

convolved image with gray level non-reduced and the image with gray level reduced, respectively.

We took the parameter vt and vz to be 1.3 and 0, respectively.

Fig. 6.1 (a) : The result of the evaluation of E i2 2
v

×
ct
_ i for the image with gray level non-reduced of Fig. 5.3

(c).  We plotted 10×log E 1i2 2
5u

×
+ct

_ i; E on the vertical axis.  We took vt to be 1.3 and vz to be 0.

E i2 2
v

×
ct
_ i spotted the root 1c . (b) : The result of the evaluation of E i2 2

v

×
ct
_ i for the image with gray level

reduced of Fig. 5.3 (d).  No roots were spotted.
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Figure 6.1 (a) clearly indicates the zero of blurs.  We verified that the true image is certainly

reconstructed by removing 1c .  On the other hand, as shown in Fig. 6.1 (b), for the image with

the gray levels reduced, it seems very difficult to judge the zero of the blur.  Further, we evaluated

,E Ei i2 2 2 2
u v

× ×
b ct t

_ _i i at other various values of t and z, but it turned out to be always difficult to

identify the zero of the blur for the image with gray level reduced.  Then we devised a little modi-

fied method that we explain in the next section. 

6.2 A variation of the highly efficient method

Next we consider the situation where the gray levels of the given image are reduced. We

define 2| on the basis of the simultaneous Eq. (3.1),
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We obtain an approximate solution hij by minimizing i
2| b_ i as  
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Figure 6.2 (a) shows the evaluation of Eq. (6.1) for the image of Fig 5.3 (c) whose gray levels

are not reduced, in which we took the parameters to be . ,1 3 0v v= =t z .  As seen is the Fig. 6.2

(a), happens that two zeros were spotted.  One of them agrees with the zero 1c in Fig. 6.1 (a).

The other root, however, is not a zero giving origin to a blur.  It was wrongly spotted by accident.  

Fig. 6.2 (b) shows the result of the evaluation of i
2| c_ i for the image with gray levels

reduced of Fig. 5.3 (d).  Two zeros were also spotted.  One of them must be fictitious (fictive)

because there can be only one root with a blur of size 2×2.  We show the image reconstructed by

using ic in Fig. 6.3 (a).  The restored image is very close to the true image.  On the other hand,



the image reconstructed shown in Fig. 6.3 (b) by using the other ic is completely dissimilar to

the true image.  In this way, although this method may lead to misjudgments by accident, we see

that it functions for a image with gray level reduced to a certain extent.  

Fig. 6.2 We took the  parameters vt and vz to be 1.3 and 0, respectively.  We plotted

log 10 1i
2 5× +| c_ i; E .  (a) : The result of the evaluation of i

2| c_ i for the image with the gray level non-

reduced of Fig. 5.3 (c).  i
2| c_ i spotted the zeros, 1c and 2c . (b) : The result of the evaluation of i

2| c_ i for

image with the gray level reduced of Fig. 5.3 (d).  The zeros, 1c and 2c ,  are spotted by the i
2| c_ i.  It looks

very similar to Fig. 6.2 (a).

Fig. 6.3 (a) : Reconstructed image by using the root 1c . It is close to the true image of Fig. 5.3 (a). (b) :
Image reconstructed  by using the root 2c . It is clearly dissimilar to the true image of Fig. 5.3 (a).

Figures 6.4 shows i
2| c_ i evaluated at other values of v, i.e., . , /1 3 26 101v v= =t z r .  In this

case, only one zero was correctly detected as a zero of the blur, that is 1c .  We can restore the

same image as that shown in the Fig. 5.3 (a) by using the root 1c , although we do not show it.
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Fig. 6.4 The result of the evaluation of i
2| c_ i for the image with the gray level reduced of Fig. 5.3 (d).  1c

gives  the minimum of the , . L0 000788i
2 2

1 =| c | c_ _i i .  We can restore the image of Fig. 6.3 (a).  We took
the parameters vt to be 1.3 and vz to be /26 101r .  We plotted  log 10 1i

2 5× +| c_ i; E on the vertical axis. 
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7.  Summary and Discussion

We have presented two variations of DCs for finding blurs convolved in a given image, name-

ly the derivative form and the multi-point form.  The derivative form of the DCs is given in terms

of the derivatives of the zeros of the z-transform of the given image. Cdet D , the determinant to be

used in DC has a form a little bit complicated especially for large sizes, but one can instantly cal-

culate it only by using the values of ,g x y_ i and b.

Then, we devised the other variation of the DCs, i.e., the multi-point form.  This variation is

given in terms of only the zeros of the given image evaluated at multiple points of u or v.  Its form

is quite simple but for the real computation, it might need an optimization procedure of a sam-

pling parameter.  

The DCs constructed for m×n blurs can actually spot blurs of any size smaller than m×n

all at once.  Therefore, when we apply the DCs to the given image, it is advisable to start with the

DCs for blurs of sufficiently large size, although we have to take account of the computational

complexity of the total image restoration process.  The DCs are very powerful in making the LB

blind deconvolution a more practical method.

We also developed a highly efficient method of reconstructing the true image on the basis of

the DCs.  The DCs are mathematically elegant in the sense that they spot multiple blurs simulta-

neously.  Further the sizes of the blurs can be determined by examining the rank of the determi-

nant of the DC.  

We presented yet another form of a search method, i.e., a simple algorithm for finding blurs

with a specified size.  The search algorithm is given in the form of simultaneous equations for blur

matrix elements.  The algorithm is meant to spot a single blur of a specified size.  Once a blur of a

specified size is detected, and the blur elements are obtained, one can easily reconstruct the true

image.  The advantage of this method is first, it can be easily extended to blurs of larger sizes.

And second, this search algorithm can be made robust against a broken convolution due to a

reduced gray scale. 

We experimentally tested the DCs and the search algorithm by using test images and exam-

ined how they function for finding blurs convolved in original images.  We have verified that the

algorithms work, in a practical processing time, very well for blurs of small sizes convolved in a

middle size image.  

Now, we examine the methods proposed in this report from the viewpoint of practicality.

With the original method proposed by LB, it takes days to process even a relatively simple image.
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When the object image is large, one needs to repeat the root finding with very fine steps, and also

with a high precision to resolve and classify the solutions forming a Gordian knot.  As a rule of

thumb, for small and simple images, a precision of 40 digits in the computation suffices, but for

larger images, 100 or more digits are needed.

The use of the DC largely simplifies the above procedure.  Only at N points in u or in v, one

needs to solve the equation.  The DC allows one to drop the solutions giving origin to the blur

among all the solutions, and then reconstruct the true image.  Thus the processing of an image is

just a matter of hours.  Even if the size of image is large, as large as 1000 × 1000 pixels for exam-

ple, it takes about two days to obtain the true image.

The method proposed as highly efficient method in the present report now allows to process

an image with a blur of a size 4 × 4 within a few minutes to one hour. Thus, it can be considered

as a first practical method based on the original idea of Lane and Bates.  Even if one cannot obtain

the blur at one point of u or in v as was mentioned as special cases in Secs. 4.3.2 and 4.3.3, the

whole procedure won’t take much longer time.  These special cases are treated separately in Sec.

4.2.1, and for each case, a prescription was given.

However, the problem with the LB method arises from the noise that is added to the convolu-

tion.  The random noise as treated by LB becomes less important with the development of the

imager devices and data transmission system.  The more important source of noise, or rather

error, making the numerical treatment difficult is stemming from the image quantization, namely

digitization with limited number of gray levels.  This is referred to as broken convolution due to

the reduced gray scale throughout this thesis.  With a development of the storage system and the

data transfer facilities, a new standard about the quantization is becoming established.  A pixel of

an image of DICOM that is for the application of medical sciences is from 12 bits to 16 bits.

However, the most popular standard is still 8 bits with 256 levels, in which case the error coming

from the quantization is a serious challenge to the numerical treatment of the images.  We pre-

sented, in this report, a few trials to make the proposed algorithms robust against the reduced

gray levels.

All the analyses were executed using Mathematica.  As an interpreter language, Mathematica

is not very fast, but it is flexible so that one can for example try different algorithms with desired

precisions quite easily.  The logarithm used in the evaluation of the Cdet shown in figures in this

report is with a base of 10.
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Fig. A2.1 Zero-sheets obtained with various ut . 
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Fig. A2.2 Closed curves of zeros (variable v).
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Fig. A2.3 Zero-sheets for various vt . 
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Fig. A2.4 Closed curves of formed with zeros (variable u).
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Fig. A2.5 Zero-sheets obtained with various values of ut . 
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Fig. A2.6 Closed curves of zeros (variable v).

Fig. A2.7 Zero-sheets for various values of vt . 
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Fig. A2.8 Closed curves of zeros (variable u).
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Fig. A2.9 Zero-sheet of the image given in Fig. 2.18 (b), where .1 3v =t is used (variable u).

Fig. A2.10 Zero sheets of the image given in Fig. 2.19 (a). .1 3v =t is used. (variable u) 
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Fig. A2.11 Zero-sheets in the case of (1)  (variable u).  
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Fig. A2.12 Zero-sheets in the case of (2)  (variable u).  

Fig. A2.13 Zero-sheets in the case of (3)  (variable u).  

Fig. A2.14 Close-up of the closed curves 7 and 8.
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