酸化チタン光触媒反応によるメチレンブルーと メチルレッドの退色

中 井 洋 介 京都産業大学大学院工学研究科情報通信工学専攻

浜 松 慧 輔

京都産業大学工学部情報通信工学科

坪 井 泰 住

京都産業大学コンピュータ理工学部

1. はじめに

光触媒は、光を照射することにより光触媒活性(光触媒反応)を示す物質の総称である[1]。 光触媒反応の利用から、水中や大気中の汚染物質に光触媒を接触させ太陽光または照明の光を 当ることにより、汚染物質を分解でき汚染した水や大気を浄化できる。光触媒反応は、太陽光 や照明を利用するため、環境への悪い影響を少なくして環境浄化に役立つ。

光触媒反応利用による環境浄化のしくみは、次の通りである。

光触媒にそのバンドギャップエネルギーよりも高いエネルギーをもつ光を照射すると、伝導 帯に電子が生成され価電子帯に正孔が生成される。励起された電子は、正孔と再結合せず光触 媒表面の酸素と還元反応し活性酸素のスーパーオキシドアニオン(・O₂-)を生成する。一方、 正孔は水と酸化反応し水酸ラジカル(・OH)を生成する。これらの活性酸素は、非常に強い 酸化分解力を持つため、アンモニアやタバコに含まれるアセトアルデヒドなどの有機分子を分 解し、二酸化炭素等の無害物に変える。例えば、水酸ラジカルは、有機物を構成する分子中の C-C、C-H、C-N、C-O、O-H、N-H等のエネルギーよりはるかに大きいため、これらの結合を切 断する。その結果、有機物が分解される。有害な有機分子の分解により汚染された水や空気の 浄化となる。代表的な光触媒として、酸化チタン(TiO₂)が知られている[2]。

種々の光触媒物質がある中で酸化チタンを光触媒として利用する利点は、次の通りである。 (1) 化粧品等に使用されており、食品添加物としても認められている為、人体に無害である。 (2) 化学的な安定性が高く、半永久的に使用することができる。(3) 1kg あたり 1000 ~ 5000 円 と比較的安価である。(4) 地殻中に豊富に存在するため、枯渇の心配がない。そのため、酸化 チタンの光触媒反応による環境浄化への応用は、多方面にわたり現在急速に進んでいる [3,4]。 酸化チタンの結晶構造には、アナターゼ型とルチル型があり [5]、前者の方が光触媒としては 有効であるとの報告がある [6]。アナターゼ型とルチル型に加えて、ブルッカイト型も存在する が、純粋な結晶の合成が困難であることから、光触媒物質としてほとんど使用されていなかった [2]。ブルッカイト型は、ルチル型、アナターゼ型に比べ、可視光に対する応答性が高く微弱な 光でも高い光触媒活性を示すといわれており、紫外線照射実験でのメチレンブルーの退色から、 光触媒活性に優れているとの報告がある [7]。しかし、ブルッカイト型酸化チタンがアナターゼ 型やルチル型と比べて光触媒活性が本当に優れているのか、優れているとすれば、どの程度優 れているのかなどの評価はまだ確定していない [8]。ブルッカイト型酸化チタンの光触媒物質と しての性能を検証し、評価するために、我々は本研究を行った。

本稿では、メチレンブルーおよびメチルレッドの有機物を含むいろいろな溶媒に対し、上記 3 種類の結晶構造の酸化チタンがそれぞれどの程度の光触媒活性を示すかを実験的に調べ、ブ ルッカイト型酸化チタンの光触媒活性の優劣を定量的に明らかにする。ここで、メチレンブ ルーおよびメチルレッドは、それぞれ 3,7-bis(dimethylamino) - phenothiazin-5-ium chloride (3,7-ビス(ジメチルアミノ)フェノチアジニウムクロリド、分子式: $C_{16}H_{18}CIN_{3}S$)および(4 [4 (dimethylaminon) phenylazo]benzoic acid)(分子式: $C_{16}H_{15}N_{3}O_{9}$)のことである。

メチレンブルーは、光学顕微鏡で細胞の核を観察するときの染色液、金魚の白点病治療薬、酸 化還元指示薬、などとして利用されている。その酸化型は図1左図に示す分子構造をとり、青 色を呈する。電子が供給されると還元型の分子構造(図1右図)のロイコメチレンブルーに変 り、無色透明である。この性質により光触媒活性の割合を調べることができる。

酸化チタンの光触媒反応によるメチレンブルーの退色の研究は、これまでいろいろなされている[9-14]。一方、メチルレッドに関しては、酸化チタンの光触媒反応の実験報告はあるが [15-17]、詳しい研究はなされていない。また、アナターゼ型、ルチル型、ブルッカイト型の3種類 の酸化チタンによるメチレンブルーおよびメチルレッドの光触媒反応の詳しい比較は、これま でなされていない。

本稿では、これらについての実験結果とその考察を報告する。

2. 実験方法

メチレンブルー溶液およびメチルレッド溶液に酸化チタンを添加したものと、添加しないも のを、アルコールと超音波洗浄器で洗浄した石英セルに入れ、光照射した。溶媒 120ml に 1.2mg のメチレンブルーを溶かした溶液に、酸化チタンを 3mg 添加し撹拌した溶液を試料とした。メ チレンブルー粉末およびメチルレッド粉末は、ナカライ化学 KK から購入した。光源には、500W のキセノンランプ(Xe ランプ)と、354nm の紫外線ブラックライト(トプコン KK 製の FI-5L) の 2 種類を用いた。Xe ランプ使用の際、340nm バンドパスフィルターを通して試料に光照射し た。溶媒には、水道水、蒸留水、ろ過水、メタノール、エタノールを用いた。

水道水には、消毒のための塩素、または上水道を伝わる際に混入した異物やカルシウム、マ グネシウム等特に不純物が多いと考えられる。水道水をドイツ BRITA 社製の浄水器に通し、ろ 過水を作った。この浄水器は、塩素、有機不純物、総トリハロメタン、一部の農薬を除去する ための活性炭と、ミネラルの一部と鉛を除去するためのイオン交換樹脂が含まれている。

アナターゼ型、ルチル型、ブルッカイト型の酸化チタン粉末は、KK 高純度化学研究所から購入した。

吸収スペクトルは、島津製作所社の分光光度計 UV-3100PC を用いて測定した。発光量子効率の測定には、浜松ホトニクス社の絶対 PL 量子収率測定装置 C9920-02 を用いた。同装置には、 150W キセノンランプを光源として取り付けている。

実験結果と考察

3. 1. 内部量子効率

バンドギャップより高いエネルギーの光を照射された物質は、励起された電子と正孔とが再 結合することで発光が起る。光触媒材料では、再結合が起らずに、電子と正孔が分離し、それぞ れが材料表面で酸素や水との化学反応を示す。酸化チタンに発光が起るか否かを調べるため、ま た、発光が起るとすればその効率を調べるため、内部量子効率を測定した。酸化チタンは、光照 射で生成する電子と正孔の大部分が再結合により熱として失活すると考えられている [18]。も し微少でも再結合エネルギーを光として放出するならば、光触媒の性能評価が可能である。発 光が観測されれば、3 種類の結晶構造をもつ酸化チタンの中で、光触媒反応が劣るとされている ルチル型が最も発光するはずと予想される。このことを確かめるため、内部量子効率の測定を 行った。

酸化チタンの励起光を観測するため、照射波長を 280nm から波長を 10nm 毎に 380nm まで変 えて測定したが、すべての波長において、量子効率はゼロであった。その一例として図 2 に照 射光 300nm での結果を示す。酸化チタンが照射された光を吸収しているが、発光は現れない。 この結果、光照射された酸化チタンは、電子と正孔の再結合は起らないことが確認された。

3. 2. 酸化チタンによるメチレンブルーの退色

3. 2. 1. Xe ランプ光照射

図3および図4はそれぞれ、酸化チタンを添加しない水道水およびアナターゼ型酸化チタン を添加した水道水溶液に、340nmXe ランプ光を10分毎に照射を6回繰り返し、計60分間照射 した場合のメチレンブルー溶液の吸収スペクトルである。メチレンブルーは、665nm、293nm、 246nm に強い吸収ピークと、499nm に微弱なピークをもち、616nm と 320nm にショルダーを もつ。この吸収スペクトルは、これまでの文献と一致する [19, 20]。 酸化チタンが含まれない 場合わずかな吸収の減少がある。メチルレッドでも同じことが観測された [21]。これは、光触 媒反応過程を経ない有機物の光劣化である。

酸化チタンが含まれる場合、照射時間の増加に伴い、顕著な吸収の減少がみられる(図4)。 図5は、665nmでの吸収強度(光学濃度 optical density)を照射時間に対しプロットしたもので ある。ブルッカイト型酸化チタンを用いた場合、図6に示すように、より顕著な吸収の減少と なっている。

図7は、アナターゼ型、ルチル型、ブルッカイト型の3種類の酸化チタンを用いての665nm 吸収ピークの変化をlog プロットしたものである。60分照射後の665nm 吸収ピーク強度の低下 率(60分間照射後の665nm 吸収強度に対する照射前の665nm 吸収強度の比)は、アナターゼ 型が4.2%、ルチル型が4.8%、ブルッカイト型が82.5%となった。低下率が100%は、665nm 吸収 帯が消滅したことを意味する。ルチル型はアナターゼ型よりわずかに光触媒活性効果が高いが、 ブルッカイト型がそれよりもはるかに光触媒活性効果が高い。

3. 2. 2. 紫外線ブラックライト照射

酸化チタンを用いた光触媒反応は、温度が上昇すると早くなる [9,10]。また、触媒作用がな くても有機物の分解は可能である。500WのXe ランプを励起光源に用いると、その高出力のた め光の熱によって溶液の温度が上昇する。その兆候として溶液の蒸発がみられた。前節で観測 した光触媒活性が光照射効果以外に、熱による効果(熱による光触媒活性度の増大)を無視で きない。熱効果を避けるために、ブラックライト(発光ピーク波長:354nm)の冷光を使用し て実験を行った。酸化チタンは354nm付近の光を吸収するため、ブラックライトは空気清浄機 の光触媒フィルターに使用されている [22]。

ブラックライト照射時間増加に伴う水道水に溶けたメチレンブルーの吸収スペクトルおよ び 665nm 吸収強度の変化を、それぞれ図 8 および図 9 に示す。吸収の低下率は、ルチル型が 7.0%、アナターゼ型が 15.5%、ブルッカイト型が 36.7% である。活性の強さはブルッカイト型、 アナターゼ型、ルチル型の順に高くなっているが、ルチル型とアナターゼ型が Xe ランプの場合 に比べて低下率が大きくなっているのに対し、ブルッカイト型の活性度が Xe ランプを用いた場 合に比べて低くなっている。

溶媒の水には、水道水の他に、蒸留水(図10)、ろ過水の3種類の水を用いた。それらの低下 率を表1にまとめた。低下率が最も大きいのが、ブルッカイト型酸化チタンを蒸留水に対して 用いた場合である。図11の右の写真からわかるように、その溶液はほぼ透明になっている。

溶媒 酸化チタン	水道水	ろ過水	蒸留水
ルチル型	7.0%	10.7%	15.2%
アナターゼ型	15.5%	13.7%	47.1%
ブルッカイト型	36.7%	73.1%	94.2%

表1 60 分ブラックライト照射後のメチレンブルー 665nm 吸収帯の低下率

3. 3. 酸化チタンによるメチルレッドの退色

メチルレッドの分子構造を図 12 に示す。酸化または還元により、ピンクオレンジ色または黄 色に変る(図 12)ことが知られている。溶液の pH や溶液の温度の違いにより、わずかに異なる 吸収スペクトルを示す [23]。ピンクオレンジ色のメチルレッドは、可視領域では 433nm にピー クをもつ強い吸収帯と 257nm にピークをもつ吸収帯から成る吸収スペクトルである(図 14)。 我々のスペクトルは、文献 [24] と一致する。

メチレンブルーの場合と同様に、3 種類の結晶構造の酸化チタンを含む溶液に、ブラックラ イトを励起光源に10分ずつ、計60分間照射して吸収の変化を観測した。溶媒として、水道水、 蒸留水、ろ過水に加えて、メタノール、エタノールについても測定を用いた。

水道水、蒸留水、メタノール、および、エタノール溶液でのブルッカイト型酸化チタンの吸収 スペクトルの照射時間による変化を、それぞれ図 13、図 14、図 15、および、図 16 に示す。ア ルコール溶液での方が、水道水に比べて光触媒反応が速いことがわかる。ルチル型とアナター ゼ型では、ろ過水を除いて、前者の方が高くなっている。

メチルレッドの 433nm 吸収ピークは、水道水、蒸留水、ろ過水ではそのピーク波長は変ら ないが、蒸留水では 433nm 吸収ピークの長波長側に 540nm に吸収帯が現れ、メタノールでは 408nm に短波長シフトし、光照射にともない 490, 335, 292, 242, 214nm に吸収ピークが現れる (図 15)。一方、エタノール溶媒ではその 490nm 吸収帯が強い吸収を示し 433nm は弱くなって いる (図 16)。アルコール溶媒でのこのような変化は、溶媒効果 (solvation effect) によるもの と思われる。

図 17 および図 18 はそれぞれ、3 種類の結晶構造の酸化チタンを添加した蒸留水およびエタ ノールに溶かしたメチルレッドの吸収ピークの光照射時間依存性を示す。エタノール溶液では、 ルチル型もアナターゼ型も他の溶媒と比べると比較的大きく低下していることがわかった。特 に、アナターゼ型の低下率は蒸留水の場合と比べて大きい。

溶媒と酸化チタンの結晶構造の違いによる可視光領域で現れる吸収ピーク強度の照射60分後の吸収低下率を、表2にまとめる。メチレンブルーの場合と同様に、低下率は、3種類の結晶構造ではブルッカイト型酸化チタンが最も高く、また、蒸留水に入れた場合が他の水よりはるかに高く、エタノールとほぼ同じである。アルコールでは光触媒反応が促進することがわかる。

図 19 は、ブルッカイト型酸化チタンを混ぜたいろいろな溶媒でのメチルレッドの 496nm 吸 収ピークの紫外光照射時間による変化を示す。蒸留水、エチルアルコール、メチルアルコール を溶媒とした場合、水道水、ろ過水に比べて、吸収低下率は非常に大きい。

紫外光照射前と60分照射後の溶液の色を写真に撮ったのが、図20である。吸収の低下率と同様に水道水、ろ過水は照射前と照射後で殆ど変化は見られない。特に低下の大きい蒸留水、エタノール、メタノールでは照射後ではほぼ透明になっていることがわかる。

照射時間をこれまでの 60 分から延ばした場合の吸収スペクトルの変化を、ブルッカイト型酸 化チタン添加の蒸留水に溶かしたメチレンブルーおよびエタノールに溶かしたメチルレッドに ついて、それぞれ図 21 および図 22 に示す。そのスペクトルから読み取った長波長側に現れる 強い吸収ピーク強度の時間変化を図 23 に示す。メチレンブルーは、照射後 50 分の間に急激な 吸収の減少を示すが 50 分以降はわずかな減少となり、600 分後でも全体の強度は小さくなり透 明に近くなる。一方、メチルレッドは照射時間が長くなるとともに減少が進み、420 分後には 全く異なる吸収スペクトル (350nm や 250nm に新たな吸収帯をもつ)を示す。メチレンブルー は、光照射によりメチレンブルー分子の濃度が減少し、透明なロイコメチレンブルーに変形し、 メチルレッドは、メチルレッド分子が分解され黄色の別の分子 (図 12 の右の分子) に変形した と、結論できる。

溶媒 酸化チタン	水道水	ろ過水	蒸留水	メタノール	エタノール
ルチル型	4.6%	0.3%	19.7%	4.2%	13.9%
アナターゼ型	1.6%	2.2%	7.1%	3.3%	33.6%
ブルッカイト	6.2%	7.3%	94.9%	78.9%	95.7%

表2 60分ブラックライト照射後のメチルレッド吸収帯の低下率

4. まとめ

水道水、ろ過水、蒸留水、エタノール、メタノール溶媒を用いた測定から、酸化チタンの光 触媒反応は、ブルッカイト型がルチル型、アナターゼ型に比べて非常に優れているということ が明らかになった。また、アナターゼ型とルチル型を比べた場合、これまではアナターゼ型が 優れていると考えられてきた。しかし、今回の実験においてルチル型を下回る結果になったこ とから、アナターゼ型は、活性が不安定であり実験環境に左右されやすい物質であると考えら れる。

ブルッカイト型酸化チタンに関しては、溶液を水道水、ろ過水、蒸留水、アルコールへと変 えると、この順序で光触媒反応がよく進行することが明らかになった。溶媒中に含まれる不純 物量が多いほど、吸収の低下率は小さくなっており、酸化チタン光触媒反応はカルシウム、マ グネシウム、塩素、有機不純物、総トリハロメタンなどの不純物が妨げる可能性があることが わかった。

今回の実験結果から、ブルッカイト型酸化チタン光触媒物質は有機物の分解のみならず、溶 液の純度評価や水質評価へも応用できることがわかった。

参考文献

- [1] 大谷文章、現代化学、2007年11月号、36.
- [2] 佐藤しんり、「光触媒とはなにか」 講談社 (2004) p. 32, pp. 121-122.
- [3] 松下博通、http://www.mlit.go.jp/chosahokoku/h20giken/seika/program/pdf/ken2-06.pdf
- [4] 大谷文章、「光触媒のしくみがわかる本」技術評論社 (2003) pp. 18-20.
- [5] T. Tsuboi, E. Setiawati, K. Kawano, Jpn. J. Appl. Phys. 47 (2008) 7428.
- [6] A. Sclafani, J.M. Herrmann, J. Phys. Chem. 100 (1996) 13655.
- [7] KK 高純度化学研究所ホームページ http://www.kojundo.co.jp/Japanese/Topics/topics/cvd09.html
- [8] 野坂芳雄、野坂篤子、「入門光触媒」(東京図書 KK2004) p.116
- [9] C.H. Kwon, H. Shin, J.H. Kim, W.S. Choi, K.H. Yoon, Mater. Chem. Phys. 86 (2004) 78.
- [10] H.H.K. Yoon, J.S. Noh, C.H. Kwon, M. Muhammed, M. Mater. Chem. Phys. 95 (2006) 79.
- [11] Bettinelli, A. Speghini, D. Falcomer, M. Daldosso, V. Dallacasa, L. Romano, J. Phys. : Condensed Matter 18 (2006) S2149.
- [12] Y. Wang, J.W. Zhang, Z.S. Jin, Z.S. Wu, S.L. Zhang, Chinese Sci. Bull. 52 (2007) 2157.
- [13] M. Wakasa, S. Suda, H. Hayashi, N. Ishii, M. Okano, J. Phys. Chem. B 108 (2004) 11882.
- [14] 若狭雅信、小林佑輔、岡野光、日本写真学会誌, 69 (2006) 271.
- [15] C. Sahoo, A.K. Gupta, A. Pal, Desalination 181 (2005) 91.
- [16] R. Comparelli, P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Mascolo, G. Lovecchio, Water Sci. Technol. 49 (2004.) 183.
- [17] J.A. Herrera-Melian, J.A. Mesa, J. Chem. Education 82 (2005) 526.
- [18] 安保正一、胡芸、北野正明、「高機能な光触媒~環境浄化、材料開発から規格化・標準化まで~」安保 正一編、エヌティーエス(2004)第1章
- [19] 加藤健次,物質工学工業技術研究報告書、第8巻第3号(2000) 95.
- [20] 八巻徹也、山本春也、特許:特開 2002-228589 (P2002-228589A) http://jstore.jst.go.jp/cgi-bin/patent/ advanced/pat/detail_pat.cgi?patid=9188&detail_id=9926
- [21] J.A. Herrera-Melian, J.A. Mesa, J. Chem. Education 82 (2005) 526.
- [22] 橋本和仁、入江寛、砂田香矢乃、「室内対応型光触媒への挑戦~技術革新が実現する世界」、工業調査会 (2004) p18.
- [23] S. Mukherjee, S.C. Bera, J. Chem. Soc., Faraday Trans. 94 (1998) 67.
- [24] K.M. Tawarah, S.J. Khouri, Dyes Pigments 45 (2000) 229.

図1メチレンブルー分子構造 (慶應義塾大学日吉キャンパス化学実験指導書、実験テーマ「メチレンブルー の酸化と還元」実験テキスト、URL: http://www.sci.keio.ac.jp/gp/2E73001A/892D6311/5A91447E.pdf より抜粋)

図2 ルチル型酸化チタン粉末に 300nm 光を照射した場合の光スペクトル (破線)。実線は粉末が無い場合。

図3酸化チタン無添加の水道水に溶かしたメチレンブルーの吸収スペクトルの340nm Xe ランプ光照射時 間依存性

図4 アナターゼ型酸化チタン添加の水道水に溶かしたメチレンブルーの吸収スペクトルの 340nm Xe ラン プ光照射時間依存性。

図5 アナターゼ型酸化チタンを添加した水道水と無添加の水道水に溶かしたメチレンブルーの665nm吸収 ピーク強度の340nm Xe ランプ光照射時間依存性。照射前の強度を1とした。

図 6 ブルッカイト型酸化チタン添加の水道水に溶かしたメチレンブルーの吸収スペクトルの 340nm Xe ラ ンプ光照射時間依存性

図7 アナターゼ型、ルチル型、ブルッカイト型酸化チタンを添加した水道水に溶かしたメチレンブルーの 665nm 吸収ピーク強度の 340nm Xe ランプ光照射時間依存性。照射前の強度を1とした。

図8 ブルッカイト型酸化チタン添加の水道水に溶かしたメチレンブルーの吸収スペクトルのブラックライ ト照射時間依存性

図9 アナターゼ型、ルチル型、ブルッカイト型酸化チタンを添加した水道水に溶かしたメチレンブルーの 665nm 吸収ピーク強度のブラックライト照射時間依存性。照射前の強度を1とした。

図10 ブルッカイト型酸化チタン添加の蒸留水に溶かしたメチレンブルーの吸収スペクトルのブラックラ イト照射時間依存性

図11 ブルッカイト型酸化チタン添加の水道水、ろ過水、蒸留水に溶かしたメチレンブルーのブラックラ イト照射前と60分照射後。下のそれぞれ写真左は紫外光照射前、写真右は照射後。

図12 メチルレッド分子構造 (キリヤ化学、「指示薬の構造」 URL: http://www.kiriya-chem.co.jp/q&a/shijiyaku.html から抜粋)

図13 ブルッカイト型酸化チタン添加の水道水に溶かしたメチルレッドの吸収スペクトルのブラックライ ト照射時間依存性

図14 ブルッカイト型酸化チタン添加の蒸留水に溶かしたメチルレッドの吸収スペクトルのブラックライ ト照射時間依存性

図15 ブルッカイト型酸化チタン添加のメタノールに溶かしたメチルレッドの吸収スペクトルのブラック ライト照射時間依存性

図16 ブルッカイト型酸化チタン添加のエタノールに溶かしたメチルレッドの吸収スペクトルのブラック ライト照射時間依存性

図17 アナターゼ型、ルチル型、ブルッカイト型酸化チタンを添加した蒸留水に溶かしたメチルレッドの 445nm 吸収ピーク強度のブラックライト照射時間依存性。照射前の強度を1とした。

図18 アナターゼ型、ルチル型、ブルッカイト型酸化チタンを添加したエタノールに溶かしたメチルレッドの496nm 吸収ピーク強度のブラックライト照射時間依存性。照射前の強度を1とした。

図19 ブルッカイト型酸化チタンを添加した水道水、ろ過水、蒸留水、メタノール、エタノール溶液に溶 かしたメチルレッドの吸収ピーク強度のブラックライト照射時間依存性。照射前の強度を1とした。

図20いろいろな溶媒での紫外光照射前と60分照射後のサンプル

図21 ブルッカイト型酸化チタン添加の蒸留水に溶かしたメチレンブルーの吸収スペクトルのブラックラ イト照射時間依存性

図22 ブルッカイト型酸化チタン添加のエタノールに溶かしたメチルレッドの吸収スペクトルのブラック ライト照射時間依存性

図23 ブルッカイト型酸化チタンを添加した蒸留水に溶かしたメチレンブルーの665nm 吸収ピーク強度と エタノールに溶かしたメチルレッドの495nm 吸収ピーク強度のブラックライト照射時間依存性。照 射前の強度を1とした。