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Computability on the Continuum
1 Introduction
It is important and mathematically significant to review some theories of mathematics from an
algorithmic standpoint.
In studies of algorithm in analysis, one puts the basis of considerations on the computability of
real numbers and the computability of continuous functions.

Here a real number z is said to be computable if there is a sequence of rational numbers
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(fractions) {#,} which approximates x and satisfies the following two conditions.

(1) The fractional sequence {7,} is recursive.

(2) There is a recursive modulus of convergence (approximation).

When the condition (2) holds, we say that z is effectively approximated by {7}, or {7}
effectively converges to x. In general, we use the expression effective when a condition similar to
(2) is satisfied.

A computable sequence of real numbers can also be defined in a similar manner. One needs the
computability of a sequence of real numbers when one has to refer to the limit.

The family of all computable sequences of real numbers is called the computability structure of
the field of real numbers.

The computability of a continuous real function on a compact interval with computable end
points can be defined in a natural manner. A real function f (on a compact interval) is comput-
able if the following hold.

(3) f preserves sequential computability, that is, for any input of a computable sequence of real
numbers, its output by f is also a computable sequence.

(4) f has a recursive modulus of uniform continuity.

Computability on an open interval can be defined in terms of an approximation of the interval
by a sequence of compact intervals and a modulus of uniform continuity which is recursive
relative to the approximating intervals.

These notions of computability respectively of a real number (a sequence of real numbers) and
of a continuous function (a sequence of continuous functions) are generally agreed to be natural
and in a sense the strongest.

According to the definition described in (3) and {(4) above for a continuous function, computabil-
ity means that there is a way to nicely approximate the values for computable inputs, and this
notion depends on the continuity.

Very often, however, we compute values and draw a graph of a discontinuous function. We
can, let Mathematica, for example, draw graphs of some discontinuous functions. We thus expect
that some class of discontinuous functions can be attributed a certain kind of computability. In an
attempt of computing a discontinuous function, a problem arises in the computation of the value
at a jump point (a point of discontinuity). This is because it is not in general decidable if a real
number is a jump point, that is, the question “x=a?” is not decidable even for computable x and

a.
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(For the subsequent discussion, let us here note the following: =, <, < on natural numbers
and fractional numbers are decidable. a<<b is decidable for computable real numbers @ and b,
while =5 and a<b are not necessarily decidable even for computable real numbers.)

One method of dissolving this problem was proposed in [4 ] by Pour-El and Richards. It was
a functional analysis approach, that is, a function is regarded as computable if it can be effectively
approximated by effectively enumerated rational coefficient polynomials with respect to the norm
of a function space, such as a Banach space or a Fréchet space.

In such a case, a function is regarded as computable as a point in a space. This is sufficient in
order to draw a rough graph of the function, but does not supply us with information when
computing individual values.

There are many ways of characterizing computation of a discontinuous function. Here we will
report some of the approaches to this problem which we have undertaken so far!. One is to
express the value of a function at a jump point in terms of limiting recursive funcions instead of
recursive functions ([ 7]). Another is to change the topology of the domain of a function ([6]).
In fact they are equivalent ([ 8]).

Pour-El theory as well as its succeeding works on computability structures for Fréchet spaces

and metric spaces are also explained in [10].

2 Preliminaries
The basic definitions below are taken from [4]. A sequence of ratinal numbers {#,} is called

recursive if

—1)8m 7(n)

= d(n)

with recursive S, v and 0.

A real number z is called computable (R-computable) if
Vm>a(p) | z—r |<i
> <,

for recursive a and {7,}. We will express such a circumstance as £= {#p, a>.

These definitions can be extended to a computable sequence of real numbers.

‘This work has been supported in part by JSPS 12440031 as well as by KSU-Project03.



32 AL ORI RN - HRE S O S B R O A AR

A real (continuous) function f is computable (R-computable) if the following hold.
(1) f preserves sequential computability, that is, for a computable {z,}, {f(x,)} is computable.

(ii) f is continuous with recursive modulus of continuity, say f3;

VHPVRENTVE2B(n, p) vV, yEln, nt+l1l.

1 1
|x—y|<; = |f(x) —f(y) |<?
This can be extended to a computable sequence of functions.

3 Computation in the limit
. 1 . . .
As a start, we will try to compute g(x) :?[x]’ where [x] is the Gaussian function, accord-

ing to [7].
Let x be a computable real number with 2= <{#,, «>, and let us consider how to compute the

value g(x). For the sake of simplicity, we assume x>0. From the information on z, one can

effectively find an # such that #n<<x<s+2. Then check
Ta(p)< (1’l+1) _1/2’)?

According to the answer to this inquiery, we define a sequence of integers {N,} as follows. While
the answer is No, put Ny=n+1. Once the answer becomes Yes at p, then put N,=# for all ¢

satisfying g=p. The sequence {N,} is well-defined and recursive.

Define next a recursive sequence of rational numbers rPZ%. If Ny=n+1 holds for all p, then

.. . +1 . T .
the limit of the sequence {7,} is ; otherwise, the limit is ER In either case, the sequence

n
2
. 1 . . .
{7,} approximates the value E[J:]. For each case, there is a recursive modulus of continuity;

only, we cannot decide which is the case.

This undecidability indicates that, although there is a computation algorithm for each z, it does

1 .
not guarantee a master program to compute the value E[x]. Indeed, there is a computable

sequence of real numbers {x,} for which the sequence of values [%[xn]] is not computable. On

the other hand, if we allow a limiting recursive function for a modulus of convergence, then we
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can claim the following: for any computable sequence of real numbers {z,}, there is a recursive
. . . 1 .
sequence of rational numbers {gu;} which approximates E[xm] with a modulus of converg-

ence which is limiting recursive.

The limiting recursive function is defined as follows.
Definition 3.1 (Limiting recursive function:Gold [1]) Let #, =0 be integers and let g and ¢,
-, @, be recursive functions. The partial function % defined as follows will be called Zlimiting

recursive :

B(pr, =, p) =limg(g(n), -, ¢, (n), D, =, Do M),

where 5(%) is a code for the finite sequence

<¢(0, Pl, e ps)’ e ¢(12, ply el ps)>7

Examples

h(pr, =, p) =limg(n, pr, -, ps).

h(p1, *-*, ps) =the least value of ¢(n, p1, ***, ps) with respect to x.

There are many examples of real functions which can be computed using the limiting recursive
modulus of convergence : see examples below. They are all piecewise continuous functions, jump-
ing at some computable points. It is hence sensible to confine ourselves to such functions as a
start of studying computability problems of discontinuous functions.

Examples ([7], [11]) h(x)=x—I[z];lx[=n if and only if n<zx<n+1; o(x)=1(x< (0,

2n+1

©0)), :%(JEZO), =0(x€ (—co, 0)); the Rademacher function system; 7(x) =tanz if

2n+3 _ 2nt+1
=7

T<r< 7 and 7(z)=0 if x 2

4 Topological computability

In computing the values or drawing the graph of a piecewise continuous function, it is a usual
practice to first compute the value or plot a dot at a jump point, and then compute values or
draw a curve on the open interval where the function is continuous. Such an action corresponds

to the mathematical notion of isolating the jump points. We are thus led to the uniform topology
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of the real line induced from the Euclidean topology by isolating the jump points.
Let X be a non-empty set.
A sequence {V,},ex such that V, : X— P(X) is called a uniformity if it satisfies some axioms,

say, Axioms A; — As (to be stated below). In particular, A; and A; can be unified to
N, Vu(z)={z}.

We will state Axioms As; — As in the form of effective uniformity. '=<X, {V,}> forms a
uniform topological space. Subsequent definitions are due to [ 6 ].
Definition 4.1 (Effective uniformity) A uniformity {V,} on X is effective if there are recursive

functions @i, a., as which satisfy the following.

Vn, mENVIEX, Vaum (x) CV,(x) NV,(x) (effective As);

VHENVZ, y€X, € Vam(y) = yEVu(x) (effective Ay);
VRENVzZ, y, 2€X, £EVaum (), YE Vaym (2) > 2EVu(2) (effective As).

Definition 4.2 (Effective convergence) {xi} CX effectively converges to x in X if there is a
recursive function 7 satisfying VaVk=y(n) (€ V,(x)).

This can be extended to effective convergence of a multiple sequence.
Definition 4.3 (Computability structure) Let S be a family of sequences from X (multiple
sequences included). S is called a computability structure if the following hold.

Cl: (Non-emptiness) S is nonempty.

C2: (Re-enumeration) If {x;} €S and « is a recursive function, then {Z.}iES.

This can be extended to multiple sequences.

C3: (Limit) If {x;) belongs to S, {x;} is a sequence from X, and {x;)} converges to {x;}
effectively, then {z;} €S. (S is closed with respect to effective convergence.)

This can be extended to multiple sequences.

A sequence belonging to S is called computable, and x is computable if {x, z, ---} is comput-
able.

We will henceforth consider the space
CT: <X, {Vn}, &, g, 3, S>

Definition 4.4 (Effective approximation) {e,} €S is an effective approximating set of S:V {x;}

computable, there is a recursive function v such that
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VnVl(eum,ne Vn(xl))

Definition 4.5 (Effective separability) Suppose {e:} is an effective approximating set and dense

in X:
VuVxIk(e€V,(x)).

Then Cr is effectively separable, and {e;} is called an effective separating set.
Note Classically, a general method to define a metric d* from a countable uniformity is known.
It is an open problem if this induced metric preserves computability. We can, however, show that,
effective convergence respectively with respect to an effective uniformity and with respect to the
induced metric are equivalent ([9]).
Definition 4.6 (Relative computability) (1) f: X— R is relatively computable (with respect to
S) if:

(i) f preserves sequential computability, that is, if {x,} is Cr-computable, then {f(xz,)} is an
R-computable sequence of real numbers.

(ii) For any {z.} €S there exists a recursive function 7(m, p) such that y€ Vyup () implies
1
| F(y) —flam) | < o
b

(2) (1) can be extended to a sequence of functions.
Definition 4.7 (Computable function) (1) f: X—R is computable if the following hold.
(i) f preserves sequential computability.
(ii) fis relatively computable, and there exist an effective approximating set, say {e;} €S, and

a recursive function 7,(k,p) for which
. . 1
Y€ Viyp (e) implies | f(y) —f(er) |S?
and

U Vro(k,m (e) =X
k=1

for p.
(2) (1) can be extended to a sequence of functions.

Definition 4.8 (Uniform computability) f is wniformly computable if f preserves sequential
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computability and there is a recursive modulus of uniform continuity for f.

There are many interesting examples of the effective uniform space and computable/uniformly
computable functions on such a space (cf. [6], [8]). For some of them, equivalence of sequen-
tial computability with respect to the uniform topology and limiting sequential computability with

respect to the Euclidean topology has been demonstrated (cf. [8]).

5 A sequence of uniform spaces

We now confine ourselves to the real numbers in the interval /=[0, 1] and functions on it.
The theory of an effective sequence of uniformities on I and its limit is developed in [ b]. The
“limit uniformity” is proven to be effectively equivalent to the “diagonal uniformity” and two
notions of computability, “diagonal computability” and “w -computability,” are shown to be equiva-
lent. We next proposed the notion of “uniform D -computability” of a piecewise continuous
function in the space of the diagonal uniform space and then proved that the Rademacher
function system is “uniformly D-computable”

We assume that v, kEN and 0<k<2"—1. We will consider real numbers and sequences of real
numbers in I
Definition 5.1 (Intervals and uniformity) Define subintervals of I, I}, and a sequence of maps
U, :I— P(I) as follows.

I'=

’

)

1 1
U (x)=I'N{e——, z+—) if z€I;.

3]

Note 1) {U)} forms an “effective sequence of uniformities” on I.

2 ) Put Z(y‘n) = UV

Y. {Zuww) is the “effective limit” of {U,}.
Definition 5.2 (v-computability) Let v be an arbitrary (but fixed) natural number.

1) A sequence {a,) with multiple index 4 is called a v-sequence if, for a k=k,<2"—1,
{a.}:CI.. (¢ may be empty.)

2) A multiple sequence of rational numbers {7,} is called a recursive v-sequence if it is
recursive and is a Y-sequence.

3) Aaumi} converges v-effectively to {xum} with respect to 7 if there is a recursive a so that

i2aly, m, p) implies @um€ U, (Lum). We write this property as
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xumgu<aumi, a(ﬂ; m, P)>

or, for short, L=, {aumi, .
4) A sequence of real numbers {z,,) is called v-computable if there are recursive v-sequ-

ence {#umi} and « as in 3 ), that is,
-Z‘um;u<7umu (X(/l, m, 1))>

Definition 5.3 (@ -computability) 1) A sequence {a,} CI is called a {v}-sequence if, for
each v, for a k,<2"—1, {a;i}iCIkVZ.

2) A multiple sequence of rational numbers from I, say {7}, is called a recursive {v}-
sequence if it is recursive and is a {v}-sequence.

In this case, {k,} can be recursive, for we can find k, by cheking “r,, €1,2".

v

3) A multiple {v}-sequence {a,,,;} converges {v}-effectively to Zum (with respect to i) if

there is a recursive « such that
VuVuVmVpviza(yv; g, m, p). @, €U, (Zum).
This fact will be expressed by
TimZ oy, aly; g, m, p)>

or simply

v

i Q0.

Tuim=wla

4) A sequence {Zum) is w-computable if there are a recursive {v}-sequence {7,,} and a

recursive o as in 3 ), that is,
TimZ 0Ty (v g, m, 0)).

Proposition 5.1 (R-computability, w-computability and v-computability) 1) For a single real
number x€ I, R-computability (i. e., computable in the Euclidean topology), w-computability and
y-computability (for each fixed v) are equivalent.

2) If {zum} is w-computable, then it is v-computable for all v.

3) For each v, if {x,,} is v-computable, then it is R-computable, hence by 2), an w-

computable sequence is R-computable.
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4) TFor each v, there is a sequence {xz,), which is R-computable but is not v-computable.
5) For each vy, v, where v,> vy, there is a sequence {x,) which is v;-computable but not v,-
computable.
6) If v,<v; and {xu) is v,-computable, then it is v;-computable.
Proposition 5.2 (@ -computability structure) @ -computable sequences form a computability
structure with respect to {Z¢, ,5} (cf. Definition 4.3).
Definition 5.4 (Diagonal sequence) The sequence { U} will be called the diagonal sequence of
{U}, and will be denoted by {U,}.
Proposion 5.3 (Diagonal sequence and limit) The sequence {U,} forms an effective uniformity
which is topologically effectively equivalent to the effective limit {Z¢, .»}.
Definition 5.5 (Diagonal uniformity) The sequence of diagonals { U,} as in Definition 5.3 will
be called the diagonal uniformity determined by {U,} or {Z(, .}, and the space <I, {U,}>
will be called the diagonal space determined by {U,}.
Definition 5.6 (Diagonal computability) A sequence of real numbers {z,,} CI is diagonal com-
putable if there is a recursive sequence {gmy} of rational numbers which converges to {xz,}
effectively with respect to { U,} in a manner that, for a recursive 7 and for k=7 (m, p), ¢gu€ U,

(zn). We will write this property as
xm£D<ka’ T>~

This definition can be generalized to a multiple sequence.
Proposition 5.4 The family of diagonal computable sequences of real numbers, say R, forms a
computability structure for <I, {U,}> (cf. C1~C3 of Definition 4.3).
Theorem 1 (Diagonal computability and @-computability) A sequence {xz,} [0, 1) is diagon-
al computable if and only if it is w-computable (cf. Definitions 5.6 and 5.3).

Let U=<X, {V,}, S> be an effective uniform space with a computability structure S. We will
consider functions from X to R.
Definition 5.7 (Sequential computability) A function sequence {f} is called sequentially com-
putable in U if, for every sequence {x,} in S, {fi(zx)} is an R-computable double sequence of
real numbers.
Propsition 5.5 (D-sequential computability of the Rademacher function system) Let {¢;(x)}
be the Rademacher function system. Then it is sequentially computable in the diagonal uniform

space. (We will call such a sequence D-sequentially computable.)
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The same applies to the Walsh function system.
Definition 5.8 (Effective uniform continuity : Definition 4.5, [6]) A sequence of functions {f,}
is called uniformly computable in U if it is sequentially computable and there is a recursive

function a such that

yEVa(n,p)(-Z) = |fn(1‘) —fn(y) |S§

(cf. Definition 4.5 of [6]).

Theorem 2 (Uniform computability of the Rademacher function system) The function sequence
{¢,} is uniformly computable with respect to { U,} (cf. Definition 5.8). We will call this computa-
bility “uniformly D-computable.”

The same conclusion holds for the Walsh function system.
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