在来種ニホンミツバチ Apis cerana japonica のミトコンドリア 全ゲノム配列の比較

平成 29 年 5 月 19 日受付

富	橋	絊	
回	(回	- MTL	

若 宮 健

奥山 永

京都産業大学総合生命科学部

要 旨

ニホンミツバチ Apis cerana japonica は、北海道および沖縄県を除く本州、四国、九州および 一部の離島に分布している在来種である。ニホンミツバチは、病害虫への抵抗性が高く貴重な 遺伝的資源としての利用が期待されている。今回の調査では、京都、奄美大島、対馬島の3地 域の野生のニホンミツバチのミトコンドリア全ゲノム配列の解読を次世代シーケンサーにより 行った。本種のミトコンドリア全ゲノム配列はおよそ1.6 kbp の環状構造を持ち、13 個のタン パク質コード遺伝子、22 個の tRNA 遺伝子、2 個の rRNA 遺伝子および1 個の AT-rich region から構成されていた。また、3 地域の全長配列の間には、遺伝子の配置転換等の構造レベルの変 異は確認されなかった。全長配列を元にした遺伝距離は、京都-奄美間で 0.0006、京都-対馬間 で 0.0015、奄美と対馬間で 0.0017 となり、各地域の固有性を示すとともに、相対的なレベルで の対馬個体の固有性と京都-奄美個体間の近縁性が示唆された。さらに、遺伝子領域ごとの遺伝 距離の比較から、領域ごとの進化速度は一定ではないことが明らかとなった。以上の結果から、 地域固有の遺伝子資源を持っている可能性が高く、今後の研究により抵抗性系統発見が期待さ れる結果を得ることができた。

キーワード:ミツバチ、ミトコンドリア DNA、在来種、地域間変異、遺伝資源

1. はじめに

日本には現在、ニホンミツバチ(Apis cerana japonica)とセイヨウミツバチ(Apis mellifera) の2種のミツバチが分布している。セイヨウミツバチが明治時代に導入された産業養蜂種で あるのに対し、ニホンミツバチは本州から九州に分布する野生種である(吉田、2000)。分類 学的にニホンミツバチは、アジア地域に分布するトウヨウミツバチ(Apis cerana)の日本亜 種で、その他に、中国亜種の A. c. cerana、インド亜種の A. c. indica、ヒマラヤ亜種の A. c. himalaya の 4 亜種に大分されている(Ruttner, 1988; 佐々木、1999)。

ミトコンドリア DNA は核ゲノムと比較して突然変異率が高く、母性遺伝をする性質を持つ ため、系統解析の有力な遺伝マーカーとして機能する。ニホンミツバチにおいても、ミトコ ンドリア DNA の部分領域である D-loop(高橋・吉田、2003: Takahashi et al., 2007)や COI (高橋、2003)の配列が解析され、その起源や遺伝的多様性に関する議論がなされてきた。部 分領域を利用した手法は多くの知見をもたらした反面、一部の領域の変異に依存する精度の 問題が残されている。例えばトウヨウミツバチの D-loop 領域では、約 300 塩基程度であるた め配列の長さの問題(Zhao et al., 2014)や海をはさんで高頻度で出現する共通ハプロタイプ の問題(Smith et al., 2000: Smith et al., 2004: Tan et al., 2007: Takahashi et al., 2007: Lee et al., 2015: Tan et al., 2015)が指摘されている。ミツバチのミトコンドリア全ゲノム配列は、 既に第1世代のシーケンサーを利用した解析により、一部の種で解読が行われており(Crozier and Crozier, 1993: Tan et al., 2011)、約 1.6 kbp の環状構造で、13 個のタンパク質コード遺 伝子、22 個の tRNA 遺伝子、2 個の rRNA 遺伝子および 1 個の AT-rich region から構成され、 共通性が高いことがわかっている。

近年、次世代シーケンサーによる遺伝子解析技術の発展により、短期間で大量の遺伝情報量 を得ることができるようになり、ミツバチでも既に一部で、ミトコンドリア DNA の全ゲノム 解析が進められている(Takahashi et al., 2016;若宮ら、2016;Okuyama et al., 2017)。本稿 では、我々の研究グループが進めてきたニホンミツバチのミトコンドリア全ゲノム配列に基づ く京都、奄美大島、対馬島の変異解析の結果について報告する。

2. 材料と方法

現在ミツバチのミトコンドリア全ゲノム配列の決定手法には、Long-PCR とサイクルシーケ ンス法を組み合わせた第1世代のシーケンサーを利用する手法(Tan et al., 2011)と次世代 シーケンサーから取得したデータを利用する手法(Takahashi et al., 2016)の2種類が存在す る。我々は、各手法の解析精度を検証するために、ニホンミツバチについて3地域間を使用 し、両方の方法で配列構築を試みた。全長配列の解析は、NGS データについてはTakahashi et al. (2016)を、Long-PCR についてはOkuyama et al. (2017)の方法にそれぞれ従って行っ た。各地域の全長配列とタンパク質コード遺伝子の遺伝距離に関しては、Tamura-Neiモデル (Tamura and Nei, 1993)を適用し、MEGA6(Tamura et al., 2013)で計算した。また、13 個のタンパク質コード遺伝子の情報を利用した最尤分子系統樹は、MEGA6(Tamura et al., 2013)で作成したアライメントを連結し、TreeFinder(Bernt et al., 2013)を用いて作成した。

3. 結果と考察

ニホンミツバチのミトコンドリア全ゲノム配列の構造

ニホンミツバチのミトコンドリア全ゲノム配列は約1.6 kbp の環状構造を持ち、13 個のタ ンパク質コード遺伝子、22 個のtRNA 遺伝子、2 個のrRNA 遺伝子および1種類のAT-rich region から構成されていた(表1、図1)。今回得られた配列と既知の配列(Takahashi et al., 2016: Okuyama et al., 2017)を比較した結果、解読が困難なAT-rich regionを除いて配列は 同一であったことから、両解析手法での結果の共通性を確認することができた。合計 37 個の 遺伝領域のうち5 個(*ND4, IrRNA, tRNA-Ala, tRNA-Cys, tRNA-Pro*)で塩基配列長の変異が 確認されたが、残りは遺伝子のサイズ、構成、位置、転写方向は、3 地域で極めて高い精度で 保存されていた。タンパク質コード遺伝子で唯一のサイズ変異が存在した*ND4*遺伝子に関し ては、開始コドン周辺の繰り返し配列が原因で読み枠にずれが生じることを確認した(図2)。 また、AT 含量は京都個体で84.01%、奄美個体で83.95%、対馬個体で83.56%となり、3 地域 間で類似した傾向を示した。これらの結果から3 地域のニホンミツバチのミトコンドリア全ゲ ノム配列の間には、遺伝子の配置転換等の構造レベルの変異は存在しないことが明らかとなっ た。

全長配列と13個のタンパク質コード遺伝子について遺伝距離をそれぞれ求めた結果、0から0.0057の範囲であった(表1)。全長配列による比較では、京都と奄美間で0.0006、京都と対馬間で0.0015、奄美と対馬間で0.0017の遺伝距離が確認され、各地域の固有性を示すとともに、対馬個体の固有性と京都と奄美個体間の近縁性が示された。13個のタンパク質コード遺伝子の情報を利用した系統解析では、3地域の配列が全て同一のクレードに含まれること、京都と奄美間のブートストラップ値が低くなることが明らかとなった(図3)。地質学的な知見では、少なくとも中期更新世には奄美大島を含む琉球列島の全ての島が孤立していたとされている(古川・藤谷、2014)。一方で、対馬島と日本本土の最後の陸橋形成が議論されている時期は最終氷期であり(多田、1998;大嶋、1990)、奄美大島の方が早期の年代で孤立したと考えられる。このような地質学的知見に反する遺伝距離と系統関係がどのような過程で生じたのかについては、他地域多検体の解析を視野に入れた今後の検証が必要であると考えられた。

タンパク質コード遺伝子ごとの比較では、全てのパターンを通して遺伝距離が生じない遺伝 子(ATPase8, ATPase6, ND4L)が存在する一方で、ND3やND6などの相対的に高い遺伝 距離が観察された領域が存在し、領域ごとに観察される遺伝距離は一定ではないことが明らか となった。従来の D-loop や COI の解析は、それぞれ単一の領域で行われることが主流であっ たため、領域特有のノイズを含む可能性が示唆された。このことから、系統解析の際には扱う 領域の進化速度を考慮に入れ、モデルの最適化を検討することが重要であると考察できた。

ミトコンドリア全ゲノム配列を基盤とした一連の解析により、部分配列の比較では明らかに

することができなかった京都・奄美大島・対馬島間の構造レベルでの保存性と3地域間の遺伝 距離の関係や遺伝領域ごとの進化速度の違いなどについて多くの知見を導くことができた。ミ トコンドリア全ゲノム配列は、短い配列が原因で生じるノイズを削減し、希少個体群の発見や 個体群の移入など、より細かなレベルでの遺伝的多様性や地域性の比較に適していることが示 唆された。今後、次世代シーケンサーを利用したミトコンドリア全ゲノム配列の比較が進展す ることで、ニホンミツバチ集団内の遺伝構造の把握が可能となることが期待される。

謝 辞

本研究は京都産業大学先端科学技術研究所の研究活動によるものである。

引用文献

- Bernt, M. Donath, A. Jühling, F. Externbrink, F. Florentz, D. Fritzsch, G. Pütz, J. Middendorf, M. Atadler, P.F. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phyl Evol 69: 313–319.
- Crozier, R.H., Crozier, Y.C. 1993. The mitochondrial genome of the honeybee *Apis mellifera*: complete sequence and genome organization. Genetics 133(1): 97–117.
- 古川雅英・藤谷卓陽 2014. 琉球弧に関する更新世古地理図の比較検討. 琉球大学理学部紀要 Bulletin of the Faculty of Science, University of the Ryukyus (98), 1–8.
- Lee, J.Y., Wang, A.R., Choi, Y.S., Thapa, R., Kwon, H.W., Kim, I. 2015. Mitochondrial DNA variations in Korean *Apis cerana* (Hymenoptera: Apidae) and development of another potential marker. Apidologie 47(1): 123–134.
- 5) 大嶋和雄 1990. 第四紀後期の海峡形成史. 第四紀研究 29(3): 193-208.
- 6) Okuyama, H., Wakamiya, T., Fujiwara, A., Washitani, I., Takahashi, J.I. 2017. Complete mitochondrial genome of the honeybee *Apis cerana* native to two remote islands in Japan. Conservation Genetics Resources, in press.
- 7) Ruttner, F. 1988. Biogeography and taxonomy of honeybees. Springer Verlag, Berlin.
- 8) 佐々木正己 1999. ニホンミツバチ北限の Apis cerana. 海游舎, 東京.
- Smith, D.R., Villafuerte, L., Otis, G., Palmer, M.R. 2000. Biogeography of Apis cerana F. and A. nigrocincta Smith: insights from mtDNA studies. Apidologie 31(2): 265–280.
- Smith, D.R., Warrit, N., Hepburn, H.R. 2004. *Apis cerana* from Myanmar (Burma): unusual distribution of mitochondrial lineages. Apidologie 35(6): 637–644.
- 11) 高橋純一 2003. ニホンミツバチの起源と分布. 昆虫と自然 38(10): 12-15.
- 12) 高橋純一・吉田忠晴 2003. ミトコンドリア DNA からみたニホンミツバチの起源. ミツバチ科学 24(2): 71-76.
- Takahashi, J.I., Yoshida, T., Takagi, T., Akimoto, S.I., Woo, K.S., Deowanish, S., Hepburn, R., Nakamura, J., Matsuka, M. 2007. Geographic variation in the Japanese islands of *Apis cerana japonica* and in

A. cerana populations bordering its geographic range. Apidologie 38(4): 335-340.

- 14) Takahashi, J.I., Wakamiya, T., Kiyoshi, T., Uchiyama, H., Yajima, S., Kimura, K., Nomura, T. 2016. The complete mitochondrial genome of the Japanese honeybee, *Apis cerana japonica* (Insecta: Hymenoptera: Apidae). Mitochondrial DNA Part B: Resources.
- 15) 多田隆治 1998. 最終氷期の日本列島―地質学から日本列島の原風景を見る(特大号 日本人の起源). 遺伝 52(10): 10–15.
- 16) Tamura, K., Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution 10(3): 512–526.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 30(12): 2725–2729.
- Tan, K., Warrit, N., Smith, D.R. 2007. Mitochondrial DNA diversity of Chinese *Apis cerana*. Apidologie 38(3): 238–246.
- Tan, H.W., Liu, G.H., Dong, X., Lin, R.Q., Song, H.Q., Huang, S.Y., Yusn, Z.G., Zhao, G.H., Zhu, X.Q. 2011. The complete mitochondrial genome of the Asiatic cavity-nesting honeybee *Apis cerana* (Hymenoptera: Apidae). PloS one 6(8): e23008.
- 20) Tan, K., Qu, Y., Wang, Z., Liu, Z., Engel, M.S. 2015. Haplotype diversity and genetic similarity among populations of the Eastern honey bee from Himalaya-Southwest China and Nepal (Hymenoptera: Apidae). Apidologie 47(2): 197–205.
- 若宮健・吉岡優奈・清拓哉・高橋純一 2016. 対馬に生息するニホンミツバチ(Apis cerana japonica Radoszkowski)のミトコンドリアゲノムに見られた遺伝的変異. 長崎県生物学会誌 78: 7–14.
- 22) 吉田忠晴 2000. ニホンミツバチの飼育法と生態. 玉川大学出版部, 東京.
- 23) Zhao, W., Tan, K., Zhou, D., Wang, M., Cheng, C., Yu, Z., Miao, Y., He, S. 2014. Phylogeographic analysis of *Apis cerana* populations on Hainan Island and southern mainland China, based on mitochondrial DNA sequences. Apidologie 45(1): 21–33.

表1 京都、奄美大島、対馬島におけるニホンミツバチ(*Apis cerana japonica*)のミトコンドリア全ゲノムの遺伝子構成と各地域間の遺伝距離

									0
Gene/Region	Strand ^{*1}	Codon		Size (bp)		Genetic distance*2			
		Start	Stop	Kyoto	Amami- Oshima island	Tsushima island	Kyoto vs. Amami	Kyoto vs. Tsushima	Amami vs. Tsushima
tRNA-Ser ^(AGN) (S ₁)	Н			60	60	60			
tRNA-Glu (E)	Н			66	66	66			
tRNA-Met (M)	Н			66	66	66			
tRNA-Gln (Q)	Н			62	62	62			
tRNA-Ala (A)	Н			65	65	66			
tRNA-Ile (I)	Н			66	66	66			
ND2	Н	ATT	TAA	996	996	996	0.0010	0.0010	0.0020
tRNA-Cys (C)	L			66	64	66			
tRNA-Tyr (Y)	L			69	69	69			
tRNA-Trp (W)	Н			69	69	69			
COI	Н	ATT	TAA	1,566	1,566	1,566	0.0006	0.0019	0.0026
tRNA-Leu ^(UUR) (L ₂)	Н			70	70	70			
COII	Н	ATT	TAA	681	681	681	0	0.0015	0.0015
tRNA-Asp (D)	Н			68	68	68			
tRNA-Lys (K)	Н			72	72	72			
A TPase8	Н	ATC	TAA	162	162	162	0	0	0
A TPase6	Η	ATG	TAA	678	678	678	0	0	0
COIII	Н	ATG	TAA	780	780	780	0.0013	0.0013	0.0026
tRNA-Gly (G)	Н			67	67	67			
ND3	Н	ATT	TAA	354	354	354	0.0028	0.0057	0.0029
tRNA-Arg (R)	L			66	66	66			
tRNA-Asn (N)	Н			68	68	68			
tRNA-Phe (F)	L			71	71	71			
ND5	L	ATT	TAA	1,668	1,668	1,668	0.0006	0.0030	0.0024
tRNA-His (H)	L			66	66	66			
ND4	L	ATT (Kyoto)/ATA	TAA	1,344	1,332	1,332	0.0008	0	0.0008
ND4L	L	ATT	TAA	264	264	264	0	0	0
tRNA-Thr (T)	Н			67	67	67			
tRNA-Pro (P)	L			78	61	78			
ND6	Η	ATT	TAA	513	513	513	0.0020	0.0020	0.0040
Cyt b	Η	ATG	TAA	1,149	1,149	1,149	0.0009	0.0017	0.0026
tRNA-Ser ^(UCN) (S ₂)	Н			67	67	67			
ND1	L	ATT	TAA	915	915	915	0	0.0011	0.0011
tRNA-Leu ^(CUN) (L ₁)	L			69	69	69			
lrRNA	L			1,331	1,329	1,329			
tRNA-Val (V)	L			67	67	67			
srRNA	L			787	787	787			
AT-rich region				568	326^{*3}	*3			
Total				15,917	15,670	15,339	0.0006	0.0015	0.0017

*¹ H は Heavy strand、L は Light strand を意味する。

*² 領域ごとに 3 地域の配列をアライメントし、Tamura-Nei model (Tamura and Nei, 1993) を用いて地 域間の遺伝距離を計算した。

*3 解析できた範囲を示す。

図1 ニホンミツバチのミトコンドリア全ゲノム配列の構造。

>京都; ATTTTの5回繰り返し ATT AAA TAT <u>ATT TTA TTT TAT TTT ATT TTA TTT T</u>AT ATC I K Y I L F Y F I L F Y I

>奄美大島,対馬島; ATTTTの4回繰り返し

AT<u>A TTT TAT TTT ATT TTA TTT T</u>AT ATC

M F Y F I L F Y I

図2 ニホンミツバチ集団のミトコンドリア DNA の ND4 遺伝子の開始コドン周辺に観察されたリピー ト配列。下線はリピート領域、翻訳アミノ酸は1文字記号でそれぞれ表記した。

図3 ミトコンドリア DNA 上に存在する 13 個のタンパク質コード遺伝子の情報を元に作成したミツバ チ属の最尤分子系統樹。

The comparison of complete mitochondrial DNA genome sequences of native honeybee *Apis cerana japonica*

Jun-ichi TAKAHASHI Takeru WAKAMIYA Hisashi OKUYAMA

Abstract

We analyzed the complete mitochondrial genome of the Japanese honeybee *Apis cerana japonica* from the Kyoto and two islands (Amami-Oshima and Tsushima) using Next sequencing technology and Sanger sequencing. The mitochondrial genome of *A. cerana japonica* from 3 populations are a circular molecule of about 1.6 kbp molecule that included 13 protein cording genes (PCGs), 22 tRNA genes, 2 rRNA genes, and 1 AT-rich control region. All protein-coding genes are initiated by ATT and ATG codons and are terminated by the typical stop codon TAA or TAG, except for the start codon of ATP8 which ends with C. All tRNA genes typically form a cloverleaf secondary structure, except for tRNA-Ser (AGN). The average AT content of the mitochondrial genome was about 84%, respectively. The genetic distance suggested that the *A. cerana japonica* from the two remote islands were more closely related to *A. cerana japonica* from the three populations in Japan showed genetic variation distinct from those found in the honeybees, they showed the presence of precious genetic diversity and resources.

Keywords: honeybee, mitochondrial DNA, native species, genetic variation, genetic resources