{"created":"2023-05-15T14:41:39.361315+00:00","id":1604,"links":{},"metadata":{"_buckets":{"deposit":"b3235495-d73d-42c3-9536-5a658d73c55d"},"_deposit":{"created_by":3,"id":"1604","owners":[3],"pid":{"revision_id":0,"type":"depid","value":"1604"},"status":"published"},"_oai":{"id":"oai:ksu.repo.nii.ac.jp:00001604","sets":["14:13:63"]},"author_link":["4096","4094","4060","20176"],"control_number":"1604","item_10002_biblio_info_7":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2009-03","bibliographicIssueDateType":"Issued"},"bibliographicPageEnd":"47","bibliographicPageStart":"29","bibliographicVolumeNumber":"38","bibliographic_titles":[{"bibliographic_title":"京都産業大学論集. 自然科学系列"}]}]},"item_10002_description_5":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"第二類拘束条件を有する非相対論的粒子系が,量子電気力学に対する共変量子化の際に用いられたGupta-Bleuler形式と類似の手法により,適切な補助条件の下で量子化される.この新しい相空間を次元簡約化しない構成法は,系の力学変数と対称性の物理的意味を保持する.配位空間上の波動関数が複素エルミート多項式を使って明確に構成され,物理状態に対応する波動関数を確率振幅として解釈することが可能となる.","subitem_description_type":"Abstract"}]},"item_10002_publisher_8":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"京都産業大学"}]},"item_10002_source_id_11":{"attribute_name":"書誌レコードID","attribute_value_mlt":[{"subitem_source_identifier":"AA11923897","subitem_source_identifier_type":"NCID"}]},"item_10002_source_id_9":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"1348-3323","subitem_source_identifier_type":"PISSN"}]},"item_10002_version_type_20":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"小泉, 耕蔵","creatorNameLang":"ja"},{"creatorName":"KOIZUMI, Kozo","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"4096","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"小西, 康文","creatorNameLang":"ja"},{"creatorName":"KONISHI, Yasufumi","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"4094","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"寺倉, 徹也","creatorNameLang":"ja"},{"creatorName":"TERAKURA, Tetsuya","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"4060","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"曽我見, 郁夫","creatorNameLang":"ja"},{"creatorName":"SOGAMI, Ikuo S.","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"20176","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2017-09-30"}],"displaytype":"detail","filename":"AHSUSK_NSS_38_29.pdf","filesize":[{"value":"104.5 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"AHSUSK_NSS_38_29.pdf","url":"https://ksu.repo.nii.ac.jp/record/1604/files/AHSUSK_NSS_38_29.pdf"},"version_id":"be781e7a-913e-4359-a235-7d1b08699775"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"一般正準理論","subitem_subject_scheme":"Other"},{"subitem_subject":"Gupta-Bleuler形式","subitem_subject_scheme":"Other"},{"subitem_subject":"複素エルミート多項式","subitem_subject_scheme":"Other"},{"subitem_subject":"確率振幅","subitem_subject_scheme":"Other"},{"subitem_subject":"対称性と生成子","subitem_subject_scheme":"Other"},{"subitem_subject":"General Canonical Formalism","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Gupta-Bleuler Formalizm","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Complex Hermite Polynomials","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Probability Amplitude","subitem_subject_language":"en","subitem_subject_scheme":"Other"},{"subitem_subject":"Symmetries and Generators","subitem_subject_language":"en","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"departmental bulletin paper","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Gupta-Bleuler形式による第二類拘束系の量子化法","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Gupta-Bleuler形式による第二類拘束系の量子化法","subitem_title_language":"ja"},{"subitem_title":"Gupta-Bleuler Quantization of Second Class Constraints System","subitem_title_language":"en"}]},"item_type_id":"10002","owner":"3","path":["63"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2017-09-30"},"publish_date":"2017-09-30","publish_status":"0","recid":"1604","relation_version_is_last":true,"title":["Gupta-Bleuler形式による第二類拘束系の量子化法"],"weko_creator_id":"3","weko_shared_id":-1},"updated":"2023-08-22T00:14:46.850996+00:00"}